极限x-3 x 1的x次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:56:06
为了简便,设1/t=-3/(x+6),则x=-3t-6lim(x→∞)[(3+x)/(6+x)]^[(x-1)/2]=lim[1-3/(x+6)]^[(x-1)/2]=lim(1+1/t)^[(-3t
lim(x→+∞)*e的x次方/x的3次方=lim(x→+∞)*e的x次方/3x²=lim(x→+∞)*e的x次方/6x=lim(x→+∞)*e的x次方/6=+∞
楼上的观点我不同意.修改一下啊,对不住一楼的,存在1的0次方,但是方法错误违背数学基础理论;楼上的确实在臆造题目啊,哈哈应该是将原式化为以e为底的指数形式(其中指数为ln(1+3x)^x=xln(1+
limx的x次方x趋向0属于“0的0次方”型未定式.首先对x的x次方取对数,为xlnx,再写为lnx/(1/x)当x趋向0(我认为应该x趋向0+)时,lnx/(1/x)是“无穷比无穷”型未定式,用洛必
令t=3^x,则方程化为9t^2-27t-t+3=0,化为9t^2-28t+3=0,(9t-1)(t-3)=0,解得t1=1/9,t2=3,即3^x1=1/9,3^x2=3,解得x1=-2,x2=1,
利用重要极限x->无穷,lim(1+1/x)^x=e,可得答案为e^3(e的三次方)再问:谢谢!还有几道麻烦了。1.lim(1-1/x)的5x次方的极限.x趋向于无穷大.2.lim(x/x+1)的x+
lim(x→∞)(2x+3)/(2x+1)^(x+3)=lim(x→∞)[1+2/(2x+1)]^(x+3)=lim(x→∞)[1+2/(2x+1)]^[(2x+1)/2+5/2]=lim(x→∞)[
根据洛必达法则分子分母分别求导再求极限就是lim(x→1)3x/2=3/2=1.5再问:谢谢不过洛必达法则我还没学希望能留个QQ交流
是x趋于1吧,那么lim(x->1)(1-x)/(1-x^3)=lim(x->1)(1-x)/[(1-x)(1+x+x^2)]=lim(x->1)1/(1+x+x^2)代入x=1=1/3
lim(x->0)[(2x-1)/(3x-1)]^(1/x)=lim(x->0){[1+(-x)/(3x-1)]^[(3x-1)/(-x)]}^[-1/(3x-1)]=e^[(-1)/(-1)]=e
2x的平方-3x-5=0,x1+x2=3/2x1*x2=-5/2x1的3次方+x2的3次方=(x1+x2)(x1²-x1*x2+x2²)=3/2[(x1+x2)²-3x1
lim(x→∞)[(2-x)/(3-x)]^(x+2)=lim(x→∞)[(3-x-1)/(3-x)]^(x+2)=lim(x→∞)[1-1/(3-x)]^(x+2),之后根据e的定义lim(x→∞)
lim【x→0】(e^3x-e^x)ln(1+x)/(1-cox)=lim【x→0】[】(e^3x-e^x)]x/(x²/2)=2lim【x→0】[(e^3x-e^x)]/x=2lim【x→
要用到一个重要极限:lim(1+1/x)^x=ex—›∞.lim(1+3/x)^(x-4)x—›∞=lim(1+3/x)^(x/3)×3/(1+3/x)^4x—›∞
x趋近于+∞lim【(2x+3)/(2x+1)】^(x+1)=x趋近于+∞lim【(1+3/(2x))/(1+1/(2x)】(x+1)=x趋近于+∞lim【{(1+3/(2x))}(x+1)/{(1+
y=(x)^(1/x)lny=(1/x)ln(x)用罗比达法则:limlnx/x=lim(lnx)'/(x)'=lim(1/x)/1=lim1/xx趋向无穷大lny=0y=1x趋向无穷大时候,x的1/
这个有以下三种结果:此函数在其取值区间是个递增函数.1、如果x取值趋近于0,则极限是0;2、如果x取值趋近于+∞,则极限是无穷大,即没有极限;3、如果指定取值区间,如(a,b)并指定趋近方向是b方向,
还是给你上图的清楚请稍等一会儿,再刷新一下再问:谢谢啦~再答:
lim(x→∞)[(x+1)/(x-2)]^x=lim(x→∞)[1+3/(x-2)]^x=lim(x→∞)[1+3/(x-2)]^{[(x-2)/3]*[3x/(x-2)]}=lim(x→∞)e^[