极限lim(x趋向于无穷)(n n 4)n次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:12:51
极限lim(x趋向于无穷)(n n 4)n次方
lim x[ln(x-1)-lnx] 求x趋向于正无穷时的极限

原式=limln[(x-1)/x]/(1/x)所以是0/0型用洛必达法则=lim[1/(x-1)-1/x]/(-1/x²)=-limx/(x-1)=-1

求极限 lim(3- x/2 -x)^x x趋向于无穷

楼上的说法不对,答案也不对.请参看图片,点击放大,再点击再放大.图已传上,稍等即可.

求极限lim(e^3x-5x)^1/x x趋向于正无穷

再答:满意的话请采纳一下

求极限lim{n[In(n+2)-Inn]},n趋向于无穷

n→∞时,ln(n+2)-lnn=ln(1+2/n)等价于2/n,所以原极限=limn×2/n=2

lim[(根号下n^2+n)-n],n趋向于无穷,求函数的极限

分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/

用极限定义证明: lim( 2^n/n!)=0 其中n趋向于无穷.

证明:对于任意给定的ε>0,要使│2^n/n!-0│=2^n/n!<ε2^n/n!=(2/1)(2/2)...(2/n)=2(2/3)(2/4)...(2/n)<2/n

求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n

设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(

求极限 lim( √N^2+N )-N X趋向于无穷 求极限

分子有理化=[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=(n^2+n-n^2)/[√(n^2+n)+n]=n/[√(n^2+n)+n]上下除以n=1/[√(1+1/n)

根据极限定义证明lim(x^2-4)/(x-2)=4 (n趋向于无穷)刚才打错了,把(n趋向于无穷)改为(x趋向于2)

洛必达法则(由于x^2-4和x-4在x趋进2时都趋进于零).极限=lim(x^2-4)'/(x-2)'=lim2x/1=4

极限n趋向正无穷,求解定积分,lim(n趋向于无穷)定积分(0到1)x∧n/1+x∧2n

原式等于lim(n->oo)c^n/[1+c^(2n)]=0c属于(0,1)再问:你这回答和没说一个样……不要逗比再答:根据积分中值定理积分部分等于(1-0)*【c^n/[1+c^(2n)]】c属于(

求下列极限 lim{n[ln(n+2)-lnn]}趋向于无穷 lim ln(1+2x)/sin3x趋向于0

lim{n[ln(n+2)-lnn]}=limln{[(n+2)/n]^n}=limln[(1+2/n)^n]=2limln[(1+2/n)^(n/2)]=2lne=2limln(1+2x)/sin3

求极限lim√[(n²+n)-n],n趋向于无穷.

分子分母同乘√(n²+n)+nlim(n→+∞)[√(n²+n)-n]=lim(n→+∞)[√(n²+n)-n][√(n²+n)+n]/[√(n²+n

当x趋向无穷lim 3∧n×tanx/3∧n求极限

tanu~ulim(3^n·tanx/3^n)=lim(3^n·x/3^n)=x再问:tanx怎么变为x的?再答:tan(x/3^n)~x/3^n再问:好得好的,谢谢了

求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)

(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1

lim 2x+1/x x趋向于无穷 求极限

2再问:过程再答:

判断极限是否存在lim [n+(-1)^n]/n n趋向于无穷 lim |x|/x x趋向于0

1.n趋向于无穷.lim[n+(-1)^n]/n=lim[1+(-1)^n/n],由于|(-1)^n/n|=1/n趋于0,故(-1)^n/n趋于0所以:lim[n+(-1)^n]/n=lim[1+(-

求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷

((1+1/n-1/n^2)^(1/(1/n-1/n^2)))^(1/n-1/n^2)n=e^1-1/n=e

lim(1-2/x)^x/2+1(x趋向于无穷)求极限

令x/2=t,x=2tx-->∞时,即t-->∞lim(1-2/x)^(x/2)+1=lim(1-1/t)^t+1=e+1