极限lim(x趋向于无穷)(n n 4)n次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:12:51
原式=limln[(x-1)/x]/(1/x)所以是0/0型用洛必达法则=lim[1/(x-1)-1/x]/(-1/x²)=-limx/(x-1)=-1
楼上的说法不对,答案也不对.请参看图片,点击放大,再点击再放大.图已传上,稍等即可.
再答:满意的话请采纳一下
n→∞时,ln(n+2)-lnn=ln(1+2/n)等价于2/n,所以原极限=limn×2/n=2
分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/
证明:对于任意给定的ε>0,要使│2^n/n!-0│=2^n/n!<ε2^n/n!=(2/1)(2/2)...(2/n)=2(2/3)(2/4)...(2/n)<2/n
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
分子有理化=[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=(n^2+n-n^2)/[√(n^2+n)+n]=n/[√(n^2+n)+n]上下除以n=1/[√(1+1/n)
(a^n)/n!>=0(a^n)/n!
洛必达法则(由于x^2-4和x-4在x趋进2时都趋进于零).极限=lim(x^2-4)'/(x-2)'=lim2x/1=4
原式等于lim(n->oo)c^n/[1+c^(2n)]=0c属于(0,1)再问:你这回答和没说一个样……不要逗比再答:根据积分中值定理积分部分等于(1-0)*【c^n/[1+c^(2n)]】c属于(
lim{n[ln(n+2)-lnn]}=limln{[(n+2)/n]^n}=limln[(1+2/n)^n]=2limln[(1+2/n)^(n/2)]=2lne=2limln(1+2x)/sin3
分子分母同乘√(n²+n)+nlim(n→+∞)[√(n²+n)-n]=lim(n→+∞)[√(n²+n)-n][√(n²+n)+n]/[√(n²+n
tanu~ulim(3^n·tanx/3^n)=lim(3^n·x/3^n)=x再问:tanx怎么变为x的?再答:tan(x/3^n)~x/3^n再问:好得好的,谢谢了
(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1
2再问:过程再答:
1.n趋向于无穷.lim[n+(-1)^n]/n=lim[1+(-1)^n/n],由于|(-1)^n/n|=1/n趋于0,故(-1)^n/n趋于0所以:lim[n+(-1)^n]/n=lim[1+(-
((1+1/n-1/n^2)^(1/(1/n-1/n^2)))^(1/n-1/n^2)n=e^1-1/n=e
令x/2=t,x=2tx-->∞时,即t-->∞lim(1-2/x)^(x/2)+1=lim(1-1/t)^t+1=e+1