服从二元正态分布N(0,1;1,4;0.5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:46:06
服从二元正态分布N(0,1;1,4;0.5)
设随机变量X,Y独立都服从标准正态分布N(0,1),则X方/Y方服从的分布为

X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

X,Y相互独立.他们都服从标准正态分布N(0,1).证明Z=X^2+Y^2服从λ=1/2的指数分布

有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

概率高手请进设随机变量X服从正态分布N~(0,1),Y服从正态分布N~(1,4),且相关系数=1则:答案P{Y=2X+1

回答:设他们的概率密度分别是f(x)和f(y),分布函数分别是F(x)和F(y).那么f(x=1)≠f(y=3).注意不等号“≠”.但是F(x=1)=F(y=3).注意等号“=”.一个变量X的概率“密

概率~正态分布~独立性问题.x,y服从二维正态,N(1,3^2),N(0,4^

z由x与y表示,x、y服从二维正态分布,从而x、z服从二维正态分布.对于二维正态分布来讲,不相关与独立是等价命题,所以由不相关直接推出两者独立.

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

问 设随机变量ξ服从正态分布N(0,1 的 概率问题

标准的正态分布直接查表就行~这种式子正常人是算不出来的.先给你两个式子P(ξ<x)=F(x);P(a<ξ<b)=F(b)-F(a).F(x)就是你的标准正态分布表N(0,1)所对应的数值.另外ξ的分布

如果X 服从正态分布 N ( 1 ,25 ),计算概率P { | X |≤1 }.

P{|X|≤1}=P{-1≤X≤1}=P{-1-1≤X-1≤1-1}=P{-2≤X-1≤0}=P{-2/5≤(X-1)/5≤0}=Φ(0.4)-0.5

如果X 服从正态分布 N ( 2 ,25 ),计算概率P { | X |≤1 }.

P{|X|≤1}=P{-1≤X≤1}=P{(-1-2)/5≤(X-2)/5≤(1-2)/5}=P{-3/5≤(X-2)/5≤-1/5}=Ф(-0.2)-Ф(-0.6)=1-Ф(0.2)-1+Ф(0.6

如果X服从正态分布N(1,25),计算概率P{|X|小于等于1}

μ=1,σ=5u=(X-μ)/σ=(X-1)/5查表得:P{|X|小于等于1}=P{-1≤X≤1}=P{-0.4≤u≤0}=0.5-(1-0.6554)=0.1554