有界变量乘以无穷小量的典例

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:15:31
有界变量乘以无穷小量的典例
当x无穷大的时候x.sin1/x的极限,不是无穷大量乘以有界变量,极限不存在吗?

不是,只有无穷小量乘以有界量等于无穷小量令t=1/x,则lim(x→∞)xsin(1/x)=lim(t→0)sint/t=1再问:当x趋于无穷大的时候sin1/x不是有界变量吗?再答:正弦函数是有界函

定义,有界变量乘以无穷小量等于无穷小,求教下什么样的函数为有界变量举举例子谢谢了,苦逼的大一新生.

有界变量:cosx,属于(-1.1)再问:有界变量就是假设y=x,y的值不能超过一个范围的函数就是有界函数吧

下列变量在给定的变化过程中为无穷小量的是

第二个极限是1第三个分母趋于0所以是无穷大量第四个极限是2^-1-1=-1/2所以选A

如果一个无穷小量与一个有界变量相乘,图像有没有可能是那种震荡的,那么还可以说结果等于无穷小么.

无穷小与任何有界变量相乘,都是无穷小再问:那么会不会有这种振荡的情况存在呢。振荡的话怎么能说还是0呢。求解答再答:等价无穷小证明是接近于0但不等于0,几个几乎为0但不等于0的数值,乘以任何值都是接近于

为什么5题是错的,不是有无穷小量×有界量=无穷小量么?

1/x趋于无穷所以sin1/x在[-1,1]震荡所以sin1/x极限不存在所以不能拆开写

有界变量和无穷小量的区别和联系,

有界变量分上确界和下确界,极限存在,无穷小量指极限为0.无穷小量一定是有界变量,但反过来不成立.

大一高数无穷小量定理一:大一第一学期高数书中讲解无穷小量定理中的一条:以“极限不为零的变量 除 无穷小量的商是无穷小量”

一、做分母,即无穷小量/极限不为零的变量二、可以做分母,这样才能比较等价无穷小,高阶、低阶无穷小之类的啊三、零零型,如果分子分母函数可导,那么可以用罗比达法则进一步求解,而一般的题目中,都是可以用罗比

有界变量与无穷小量的和是否仍为无穷小?

不一定比如an=1是一个常数列,当然有界bn=0,显然是一个无穷小an+bn=1显然不是无穷小

有界变量乘以无穷大量是什么求大神帮助

这个不是计算二重极限的方法之一么,有界量乘无穷大为无穷大.查看原帖

极限 无穷小量 有界变量的区别

无穷小量就是0,有界变量就是在某个区域例如sinx的取值肯定时在[-1,1]

判断题 无穷小量与有界函数之积是无穷小量 对还是错

这个结论是正确的.再问:跪谢再问:若需求函数Q=30-2p,Q为销量,p为价格,则收益函数R(p)为多少再答:R=pQ=p(30-2p)吧??收益=利润吗??不是很懂。再问:好吧我也不懂

有界函数乘无穷小量为什么等于无穷小量

以前答过,用定义证明之:数列{Xn}有界,又limyn=0证明limxnyn=0因为xn有界,存在正数M,使得|Xn|0,当n>N时,有|yn-0|N时有所以|xnyn-0|=|xn||yn|

一个有界变量除以无穷小量还是无穷小量吗

不是再答:有界变量与无穷小之积仍为无穷小再问:所以有界变量除以无穷小量结果是无穷大吗?再答:嗯嗯

为什么无穷小量与有界变量的乘积的极限为零?这个式子哪个是无穷小量?

再问:那为什么无穷小量与有界变量的乘积的极限为零?再答:这是定理再问:还有关于无穷量的定理吗?我书上好像都没有这条

三角函数变量怎么判断是无穷小量还是无穷大量

这里的y=cot4x是一个函数.把x代成角度或是弧度再进行计算.根据cotx的图像可知:该函数的周期为π,以(0,π)为一个周期来看,则是越靠近y轴就越大(不能与y轴相交,也就是无穷大),越接近x=π

无穷小量的阶是怎么回事?

x→0时,[√(x+2)-√2]=x/[√(x+2)+√2],分母的极限是2√2,所以√(x+2)-√2是x的一阶无穷小.sinx等价于x,是x的一阶无穷小.所以,x→0时,函数[√(x+2)-√2]