d dxt(x²-t²)dt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:03:38
不太看得懂你的问题,你应该想问积分上限函数吧(变限积分)?运用原函数存在定理即可,d/dt∫[x^2→0](sint/t^2)+1dt=[d/dt∫[u→0](sint/t^2)+1dt]*(x^2)
|10-5x|=exp(-5t),当t趋于无穷大时,|10-5x|=0,x=2
记F(x)=∫(0,x)f(t)dt-∫(-x,0)f(t)dt,则F(x+T)=∫(0,x+T)f(t)dt-∫(-(x+T),0)f(t)dt=∫(0,x+T)f(t)dt-∫(-x-T,0)f(
φ(x)=∫(0~2x)t(e^t)dt=[te^t-e^t+C](0~2x)=2xe^(2x)-e^(2x)+1φ'(x)=[2xe^(2x)-e^(2x)+1]'=2e^(2x)+2x*2*e^(
-(sinx/x)
f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫
1)首先(0,x)∫f(t)dt是一个变上限积分,可以看成h(x)2)设∫f(t)dt=F(x)+C的话,则h(x)=(0,x)∫f(t)dt=F(x)-F(0)两边求导,得h‘(x)=F’(x)=f
F(x)=∫[0,x](x^2-t^2)f(t)dt=x^2∫[0,x]f(t)dt-∫[0,x]t^2f(t)dtF'(x)=2x∫[0,x]f(t)dt+x^2f(x)-x^2f(x)=2x∫[0
积分cosu(x-t)dt=-1/u积分cosd[u(x-t)]=-1/usin[u(x-t)]+ct为积分变量,其他的为常数!再问:是cos(u(x-t))dt再答:没错啊!你这题没写全,我只能这样
令u=x-t,则不定积分=-∫sin^100udu=F(u)+C,其中F(u)是-sin^100u的原函数,即F'(u)=-sin^100u,则d/dx不定积分=F'(u)*u'(x)=-sin^10
不对再答:再问:再答:我看错了,你中间还有个*我没注意到。这个没错啊,这公式很基础啊。微积分课本上有再问:为什么可以这样?再答:引入一个未知数,便于计算。你多看看课本,先看明白了微分,在看这个反函数
dx÷u=dy÷v=dt则既然是连等式,取其两个等式dy÷u=dt,dy=dt×u
f(x)=sinx+∫_{0}^{x}t*f(t)dt-x∫_{0}^{x}f(t)dt(1)两边对x求导得:f'(x)=cosx+xf(x)-∫_{0}^{x}f(t)dt-xf(x)即:f'(x)
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
t=x-udt=d(x-u)=-du没错应该是dt=-du再问:����-du�������������Ǹ��ģ��ο���������ġ�再答:Ӧ���Ǹ��ġ������
∵dx/(x+t)=dy/(-y+t)=dt==>dx/(x+t)=dt,dy/(-y+t)=dt==>dx-xdt=tdt,dy+ydt=tdt==>e^(-t)dx-xe^(-t)dt=te^(-
dx/(x+t)=dtdx=(x+t)dtx=(1/2*x^2+tx)dtxt=1/2*x^2t+1/2t^2x1=1/2(x+t)x=2-t
令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x
x=f(t)dx=df(t)=(df(t)/dt)*dt=f'(t)dt