有9个螺丝钉,其中一个是次品,会比其他螺丝钉轻一些,合格的螺丝钉都一样重,如果给

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:30:31
有9个螺丝钉,其中一个是次品,会比其他螺丝钉轻一些,合格的螺丝钉都一样重,如果给
有11个零件其中有一个是次品,次品比较轻,用天平至少称几次就能找出次品

3次第一次,拿10个,左边放5个,右边放5个,如果两边一样重,则没放上去称的第11个就是次品如果两边不一样重,则继续第二次,拿比较轻的一边的5个出来,左边放2个,右边放2个,如果两边一样重,则没放上去

有2000个零件,其中有一个是次品,用天平至少称几次一定能找出这个次品?急,

最后一次:1,1,1倒数第二次:3,3,3倒数第三次:9,9,9倒数第四次:27,27,27倒数第五次:81,81,81倒数第六次:243,243,243倒数第七次:729,729,542所以,共需要

有45个零件,其中一个是次品,较重.至少称几次,一定能找出次品?

运气好3次,最多4次第一次,将45个分成三组,每组15个,可找出其中一组有次品第二次,将15个分成三组,每组5个,可找出其中一组有次品第三次,将5个分成2个、2个和1个,如果2个、2个一样重,那剩下的

有26个零件,其中有一个零件是次品(次品轻一些).用天平称,至少称______次能保证找出次品零件.

26(9,9,8),把两个9个一组的放在天平上称,可找出有次品的一组里,再把9(3,3,3),可找出有次品的一组,再把3分成(1,1,1),可找出次品,需3次.如次品在8个一组里,则把8分成(3,3,

有3个玻璃球,其中一个是次品,质量较轻些,用天平至少称( )次就能保证找出这个次品

--把天平当杠杆用一次就行任选两个球称量若两边质量相等则没称的是次品若两边质量不等则质量少的是次品

明明有9个球,其中有一个是质量不足的次品球,你只能用天平称两次,你能找出次品球吗?

3个一堆分3堆,第一次,3与3称,如果平,问题在第三堆,将第三堆,取出1与1称,完成.如果第一次不平,将轻的堆比照第三堆,解决.再问:但如果第二次两个都相等呢?

有9个乒乓球,其中有一个是次品,次品比正品轻一些,用无砝码的天平至少称几次能保证找出这个次品?

第一种情况;天平左右各放3个,如果平衡.再把其余的3个放2个到天平的两边,如果平衡,剩下的一个就是次品.如果不平衡,轻的一边就是次品.第二种情况:天平左右各放3个,不平衡.轻的一边中必有次品.再把轻的

王师傅加工了27个零件,其中有一个是次品,比正品轻一点.用天平称,至少称几次能找出其中的次品?

3次;1,27个分成A,B,C3组,每组9个,A,B分别放到天平称,如果平衡,次品在C组;如果不平衡比如B组高(轻),次品在B组;2,9个分成D,E,F3组,每组3个,D,E分别放到天平称,如果平衡,

从混有5个次品的20个零件中任意抽取两个,已经发现其中一个是次品,那么两个都是次品的概率是多少?

条件概率:2个都是次品的情况有:C52=10任意取2个的情况有:C(20,2)=190两个都不是次品的情况有:C(15,2)=10510/(190-105)=2/17

8个乒乓球,其中有一个是次品.有天平一架,用2 次称出.是否能检测那个次品.次品比标准重些

可以.首先取6个,天平两边各放3个.如果天平两边重量相同,则把剩下得2个放到天平两端,就可以称出哪个是次品.如果天平两边重量不等,从重的那一边的3个球中,任意取两个,如果天平平衡,则剩下的是次品,如果

有九个乒乓球,其中有一个是次品,请你用天平两次称出其次品

3个一组,共3组1、2组先秤,如果平衡,就是3组里的然后再秤3组里的就出来了

8个乒乓球,其中有一个是次品.有天平一架,用2 次称出.是否能检测那个次品.

先分成三组:A组3个,B组3个,C组2个.第一次:把A,B两组拿去放在天平左右称.1)平衡:这6个都是正货.取其中一个放于一边.在第C两个中取1个放于另一边.a.平衡:这个正货,则剩余那个假.b.不平

有9个外观一样的乒乓球,其中一个是次品,它比正品轻一些,现有一架天平,你能只称两次就找出次品吗?

9个平均分成3份,每份3个,任选2份放在天平两侧,如果天平不平衡,次品在轻的一份;如果两侧平衡,次品在剩下的一份中.3个平均分成3份,每份1个,任选2份放在天平两侧,如果天平不平衡,次品是轻的一头;如

有9个外观一样的兵乓球,其中一个是次品,它要比正品轻一点,现有一架天平,你能只称两次就找出次品么?

1、把乒乓球随便分成三份,每份三个.2、随便挑两份出来,比较这两份的重量(记住是【份】,不是【个】)3(1)、有质量差的话,取轻的那一份,次品就在其中.至此用掉一次称量机会.3(2)、无质量差的话,取

有9个外观一样的乒乓球,其中一个是次品,它要比正品轻一点,现有一架天平,你能只称两次就找出次品吗?

1.分为3组,每组3个.2.先比较两组,如果这两组相等,则次品在另外一组;把另外一组拿两个出来比较,如果相等,则次品为第三个;3.如果先比较的两组有一组比较轻,则次品在这里面;拿出两个比较,如果相等,

有27个形状相同的零件,其中有一个是次品,次品较重,要称几次才能找出次品

三次.第一次分成3份,每份九个.天平一边九个,平衡的话就在第三堆.有一边下沉则在下沉的这边.同样的道理,再分3分可以找出在哪三个中间.第三次就可以找出是那个为次品了.

有9个羽毛球,其中有一个是次品(次品轻一些),用天平称,至少称几次就一定能找出次品来?请写出称的过程

2次,先将9个球分3堆,每组3个,任意拿两组到天平,如果平衡则次品在第三组如果不平衡也可以找出在哪一组将有次品的那组中任意两个放天平,平衡则第三个是次品不平衡则翘起的那端是次品

现在有9个小球,其中有一个是次品,若次品比正品重一点,利用一架天平,最少称几次一定能把次品找到?

2次第一次3个和3个称如果有一边重一点,那其中就有次品如果一样重,其次品在剩余的3个内再把有次品的3个,1个和1个称一下,如果有一边重一点,则为次品如果一样重,其次品在剩余的1个

现有10个零件,其中有一个是次品(次品重一些),用天平称,最少称几次就一定能找出次品来?

3次1.先把分成2个5块称,取重的继续称2.把5块里面取4块分成2个2块称,如果一样,没称的一块就是次品,如果不一样继续取重的称一次