有2个线性无关的特征向量就可以相似对角化
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:36:09
这个问题你可以作为一道证明题来做:证明不同特征值对应的特征向量线型无关.设x1,x2是A的两个不同的特征值;n1,n2分别为其对应的特征向量.设存在实数k1.k2使得k1*n1+k2*n2=0;易证不
既然任何一个n维非零向量都是A的特征向量那么把n阶单位阵的每一列都取出来,这n个向量线性无关,并且都是A的特征向量再问:懂起了,谢谢老师!
有个定理:若n阶方阵有n个不同的特征值,则必有n个线性无关的特征向量.所以2阶方阵若只有一个线性无关的特征向量,那么它的特征值一定相同即它的特征值必二重
特征值a的几何重数就是 n-r(A-aE)也就是齐次线性方程组 (A-aE)X=0 的基础解系所含向量的个数几何重数不超过代数重数
这不很显然么?n维空间的维数既然是n,根据维数的定义,肯定有n个线性无关的向量.既然任意一个n维的都是它的特征向量,那么这n个线性无关的向量也必然是,所以它肯定有n个线性无关的特征向量再问:能不用向量
定理:n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量k重特征值有k个线性无关的特征向量而对k重特征值λ,属于特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解所以属于特征值λ的线性
这是线性代数里的题目.是这样子的:你可以取n维单位向量组,即可得证.再问:我不明白的地方就是:如何由“一个n维非零向量都是矩阵A的特征向量”推导出“A有n个线性无关的特征向量”,具体是什么推导过程??
应该是问A的秩吧,是1
A是数量阵,可用相似于对角阵说明.
首先需要指出,特征值对应的特征向量一定是无穷多个,如果说“有三个特征向量”其实是“有三个线性无关的特征向量”的粗略的讲法.对于重特征值,主要需要关心的是它对应的特征子空间的维数(这个叫做几何重数或者度
A=diag【x,x,.,x】
这个问题有些模糊,不好答.这样说吧,属于A的不同特征值的特征向量(每个特征值拿一个特征向量出来构成的向量组)线性无关.属于A的不同特征值的特征向量(每个特征值拿若干个线性无关的特征向量出来构成的向量组
(A)显然不对(B)不对(C)正确(D)尽管|A|=|B|,但前提与(C)矛盾选(C)再问:为什么A相似B再答:A,B有共同的特征值,且各自有n个线性无关的特征向量所以A,B都可对角化,且都相似于同一
|A-λE|=-λ0111-λx10-λ=(1-λ)((-λ)^2-1)=-(λ-1)^2(λ+1)所以A的特征值为1,1,-1.A是否能对角化,取决于重根特征值1是否有2个线性无关的特征向量即是否有
n阶矩阵A最多有n个线性无关的特征向量,因为n阶矩阵的特征向量必然也是n维的,而n维空间的向量也最多只有n个是线性无关的.
这可能是概念问题属于同一特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解确实有无穷多个但线性无关的解向量组最多含n-r(A-λE)个,即齐次线性方程组的基础解系所含向量个数另,n+1个n维
A是2阶矩阵,所以有2个特征徝,如果不相等那么对应的特征向量必无关,这与已知矛盾再问:如果特征值不相等对应的特征向量线性无关不是只对实对称矩阵么?这里的A没说是对称矩阵再答:你搞混了,不同特征值的特征
是线性无关的,其可张成不同的线形空间
1、根据定义:Ax=λx,那么x是特征向量,λ是特征值当λ=2是二重特征值时,Ax=2x要有两个线性无关的解,这样A的特征无关向量才能有3个2、这是不能的,λ=2是A的二重特征值,可能有两个线性无关的
是的,一定可以相似对角化.