曲线部分∫(6xy²-y³)dx (6x²y-3xy²)dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:10:20
曲线部分∫(6xy²-y³)dx (6x²y-3xy²)dy
求曲线x^3+y^3-xy=1d在点(0,1)处的切线方程

3x^2*dx+3y^2*dy-ydx-xdy=0dy/dx=-(3x^2-y)/(3y^2-x)=1/3求曲线x^3+y^3-xy=1d在点(0,1)处的切线方程是y=(1/3)*x+1

计算曲线积分I=∫(-x^2y)dy+xy^2dy,其中L是区域D={(x,y)|x^2+y^2

应用格林公式,第一个积分号的上下限为0和π,第二个积分号为0到2cos#,答案为1.5π再问:为什么是0到2cos#重点的过程

∫ (6xy^2-y^3)dx+(6x^y-3xy^2)dy

(6xy^2-y^3)dx+(6x^y-3xy^2)dy=d(3x^y^-xy^3),∴原式=(3x^y^-xy^3)|,=(9x^-7x)|=9*7-7=56.再问:原式==(3x^y^-xy^3)

设C是y=x^2上从A(-1,1)到B(1,1)上一段.分别用参数化和格林么式两种方法计算曲线积分∫(e^y一2xy)d

你等一下我,我一会帮你算再问:好的,谢谢再答:再答:再问:谢谢哈再问:利用格林公式计算二重积分∫∫e^-y^2dxdy、其中D是以(0、0)、(1、1)和(0,1)为顶点的三角形区域再问:这个会吗?我

设D=x³,y=1,x=-1所围成的平面闭区域,其中D₁为D在第一象限的部分,则∫∫(xy+cos

设D2:由y=x^3y=-x^3x=-1所围成的区域.D3:由y=x^3y=-x^3y=1所围成的区域.则根据重积分的区域可加性和对称性:∫∫(D)(xy+cosxsiny)dxdy=∫∫(D2)(x

设曲线XY=1与直线Y=2,X=3所围成的平面区域为D,求D的面积;求D绕X轴旋转一周所得旋

1.两直线与曲线的交点别为(1/2,2),(3,1/3)用割补法得面积A=(3-1/2)*2*∫1/xdx=5(ln3-ln(1/2))(注:积分限为1/2到3,实在是打不出来了,)2.D绕X轴旋转令

曲线积分怎么求求∫L 〖(5x^4+3xy^2-y^3 )dx+(3x^2 y-3xy^2+y^2 )dy L:y=x^

y跟x是成函数关系吧那么第一个就是求导了两边同时对x求导令dy/dx为a则6a/6y=3y+3xaa=3y^2/1-3xy第二问就是再导多一次令d^2y/dx^2=bby-a^2/y^2=3a+3a+

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

一道简单的曲线积分计算对坐标曲线积分∫(6xy^2-y^3)dx+(6x^2y-3xy^2)dy为从点A(0,0)经曲线

答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.

∫∫ye^(xy)dxdy,其中D是由曲线xy=1与x=1,x=2,及y=2的所围成的平面区域

∫∫Dye^(xy)dσ=∫(1→2)dx∫(1/x→2)ye^(xy)dy=∫(1→2)(2x-1)/x²•e^(2x)dx=[(1/x)•e^(2x)]|(1→2

计算∫∫(D)x^2ydxdy,其中D是由曲线xy=1,y=√x,x=2围成的平面区域

可以X型或Y型方面计算将二重积分化为普通定积分计算即可若是X型,先计算对y的定积分,后对x若是Y型,先积分对x的定积分,后对y若是Y型的话需要分段,因为积分区间中有两条曲线的交接.

∫∫ye^(xy)dxdy,其中D是由曲线xy=1与x=1,x=2,及y=2所围

原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)

xy分别为6-根号10的整数部分和小数部分,求x+2y的值

6根号10是6倍的根号下10吧,这样3<根号10<4,所以整数部分18,y=6根号10-18x+2y=18+2(6根号-18)=12根号10-18如果是6-根号10,那么同样的思想,2<6-根号10<