曲线过点(0,1)且曲线任一点处的切线为2x,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:47:10
设切点为(a,a^3+11)y'=3x^2,y'(a)=3a^2切线为:y=3a^2(x-a)+a^3+11=3a^2x-2a^3+11代入点(0,13):13=-2a^3+11,得:a=-1所以切线
是(-1-y)/x吗?在任一点(x,y)的切线斜率就是在该点的导数值,dy/dx=-(1+y)/x,解该微分方程,dy/(1+y)=-dx/x,两边积分,∫d(1+y)/(1+y)=-∫dx/xln(
根据题意,这个曲线方程的导数是y'=2x,积分可以求得其方程为y=x^2+C,C为常数;代入(0,1),得到C=1,所以y=x^2+1
即y'=ydy/dx=ydy/y=dx积分lny=x+C过(0,1)0=0+C所以lny=xy=e^x
即y'=ydy/dx=ydy/y=dx积分ln|y|=x²/2+lnC所以|y|=c*e^(x²/2)代入点c=1所以y=e^(x²/2),x≥0y=-e^(x²
先求导数y'=5/(2*根号x)设切点坐标为(a,5根号a)切线方程为y=kx+b代入切点和P的坐标得b=55根号a=ak+bk=(5根号a-5)/a由导数可知k=5/(2*根号a)5/(2*根号a)
就是f(x)=lnx+2啊,为什么是f(x)=ln/x/+2呢?而且两个答案也没有任何区别.
y'=x-yu=x-yy=x-uy'=1-u'1-u'=uu'=1-udu/dx=1-udu/(u-1)=-dxln(u-1)=-x+C0u-1=Ce^(-x)C=e^C0u=Ce^(-x)+1y=x
由题意可知f(x)的导数方程为2x-1故设f(x)=x^2-x+C又因曲线过点(0,1)代入求得f(x)=x^2-x+1
y'=x²y=x³/3+CC=1此曲线方程y=x³/3+1
如果用导数方式求解,曲线方程求导数为dy/dx=4x,在p点dy/dx=8.切线斜率为8,y=8x+b,b=y-8x=6-8×2=-10.切线方程为y=8x-10设曲线切线方程为Y=kX+Bk=4xY
y'=1/x设切点为(x0,lnx0),则切线的斜率k=1/x0,切线方程:y-lnx0=(1/x0)(x-x0)∵过(0,-1)-1-lnx0=(1/x0)(-x0)∴lnx0=0∴x0=1代入切线
切线的斜率为2x,即f'(x)=2x所以f(x)=x²+C其中C是常数过(1,2)所以2=1²+CC=1f(x)=x²+1
y=x^2y'=2x设切点为(a,a^2),则切线为y=2a(x-a)+a^2=2ax-a^2代入点(1,-3),-3=2a-a^2即a^2-2a-3=0(a-3)(a+1)=0a=3,-1故直线有两
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
设切点为(m,1/m²)y'=-2/x³y'(m)=-2/m³=k又k=(1/m³-0)/(m-3/2)所以:(1/m³)/(m-3/2)=-2/m&
如果你没有学导数:设所求直线为y=a(x+1),曲线y=根号x单调递增,其切线必然与该曲线只有切点这一个交点.也就是说联立两方程只有唯一解,联立得到(ax)^2+(2a^2-1)x+a^2=0,该方程
设该曲线方程为y=f(x).则在x点的切线的斜率为y'=f'(x).所以依题意得:xf'(x)=k.(其中k为常数反比例常数)所以:f'(x)=k/x.即:f(x)=klnx+C.由于曲线过(1,2)
f(x)的导数也就是斜率已知,那么f(x)=(1/3)x^3-x^2+c,又因为过点(0,1)则f(x)=(1/3)x^3-x^2+1
y=5√xf'(x)=5/(2√x)平行时,f"(x)=2x=25/16f(x)=25/4切线为y-25/4=2(x-25/16)设切点(t,f(t))切线为y-5√t=5/(2√t)(x-t)代入(