曲线y=x²,y²=8x所围绕y轴旋转而成的旋转体体积等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 16:40:23
曲线y=x²,y²=8x所围绕y轴旋转而成的旋转体体积等于
方程x²+y²=|x|+|y|所表示的封闭曲线所围成的图形面积

答案,π+2再问:我要过程再问:谢谢合作再答:高中还是大学再问:高中再答:关于x,y轴都对称,所以算出第一象限部分面积,然后乘以4,再问:已知P(6,8)在圆C:x²+y²-6x-

求曲线y=x^2/2与 y^2+x^2=8所围成图形的面积?

曲线y=x^2/2与y^2+x^2=8交点(-2,2)(2,2)围成图形的面积=∫(-2~2)[8-x^2]^1/2-x^2/2dx=4arcsin[x/(2*2^0.5)]+2^0.5x(1-x^2

求由平面曲线:Y=X平方,Y=1所围图形的面积.

S=1-1/3=2/3这是一个定积分问题再问:你确定这是对的么再答:不好意思忘了×2了,左右两部分再问:额你在写一次吧再答:我给你说详细点再问:恩呢麻烦你发到QQ1013944362

求平面曲线所围成的图形的面积 y=1/x,y=x,x=2

解联立方程:y=1/x,y=x所以x=-1,y=-1,(不符合,舍去)x=1,y=1由定积分的知识有:该平面曲线所围成的图形的面积为;S=积分:(1,2)[x-1/x]dx=[x2/2-lnx](1,

求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积

∵y=x²/2与x²+y²=8的交点是(-2,2)和(2,2)且所围成的图形关于y轴对称∴所围成的图形面积=2∫[√(8-x²)-x²/2]dx=2[

方程x^2+y^2=|x|+|y|所表示的封闭曲线所围成的图形面积为

分别按x>0,y>0和x>0,y≤0和x≤0,y>0和x≤0,y≤0讨论,这样绝对值就可以去掉了,每种情况得到的曲线都是圆的部分,当x>0,y>0,原方程可化为:(x-½)²+

方程x^2+y^2=|x|+|y|所表示的封闭曲线所围成的图形面积

x^2+y^2=|x|+|y|x^2-|x|+1/4+y^2-|y|+1/4=1/2(|x|-1/2)^2+(|y|-1/2)^2=1/2易知曲线关于两坐标轴及原点对称,在第一象限内,曲线是个以(1/

求曲线所围成的图形面积.y=x^3,y=(x-2)^2以及x轴

x³=x²-4x+4x³-x²+4x-4=0x²(x-1)+4(x-1)=0(x²+4))(x-1)=0x=1所以交点(1,1)x³

求曲线y=1/x及y=x,x=3所围成图形的面积

这个貌似要用到微积分,初等数学解不了;但如果你会微积分或者说你能看懂微积分的解题步骤的话,这个是微积分的最最最最最基本的问题,随便照着例题做就行.再问:怎么做?再答:将图形分成两部分,左边是一个边长为

已知曲线y=x

这就是一直线,再空间中把直线也叫曲线,因为再未知的情况下都叫曲线,即使结果是直线,就象我们在写东西的时候,不知道他是男的还是女的,就写成"他"一样

求曲线x² y²=|x| |y|所围成的图形的面积.

讨论x、y的正负性,可以得出所围成的图形是边长为根号2的正方形,则面积为2

求解微积分题.求由曲线y=x^2/2与曲线x^2+y^2=8所围图形的面积

圆化成极坐标计算方便,抛物线仍用直角坐标计算

求曲线y=x^2和曲线y^2=x所围成的平面图形的面积

两曲线交点(0,0),(1,1)积分区间为[0,1]已知y²=x在y=x²上方→∫(√x-x²)dx接下来就是计算了

求曲线y=x·x 与y=x所围成的面积用微积分做速度!

联立方程算出交点:(0,0)(1,1)S=∫{0到1}[x-x^2]dx=[(1/2)x^2-(1/3)x^3]{0到1}=[1/2-1/3]-0=1/6

由曲线y²=x,y=x,所围图形的面积是(?)

答案为D,根据积分的意义求解

1.方程x*y^2-X^2*Y=2X所表示的曲线关于什么对称?

用-x,-y代换xy^2-x^2y=2x中的x,y,所得方程仍为xy^2-x^2y=2x,所以xy^2-x^2y=2x表示的曲线关于原点对称∵向量MF1乘向量MF2=0∴MF1⊥MF2于是△F1MF2

求:曲线y=x^2与y=2所围成图形的面积?

∵曲线y=x^2与y=2所围成图形是关于y轴对称(图形自己画)∴所围成图形的面积=2∫√ydy=[2*(2/3)*y^(3/2)]│=(4/3)*2^(3/2)=8√2/3.

曲线y=e^x(x

l在t处斜率为e^t点斜式:y-e^t=e^t*(x-t)整理,得:y=e^t*(x-t+1)————(1)当y=0时,x=t-1当x=0时,y=e^t*(1-t)所以S(t)=|-e^t*(1-t)

曲线y=x^2,y=x,y=2x,所围图形面积

y=x^2和y=x原点以外的交点(1,1)y=x^2和y=2x原点以外的交点(2,4)0

求曲线y=x^3-6x和y=x^2所围成的图形的面积

根据两曲线联立,求出交点:x^3-6x=x^2x(x-3)(x+2)=0x=-2,x=0,x=3所以曲线y=x^3-6x和y=x^2的交点有:(-2,4),(0,0)和(3,9)在x轴上利用“穿根法”