曲线y=e^x x在点x=0的切线方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:15:06
曲线y=e^x x在点x=0的切线方程是
设函数y=y(x)满足微分方程y''-3y'+2y=2e^x,其图形在点(0,1)处的切线方程与曲线y=x^2-x+1在

二次线性常系数微分方程,还知道过某点和某点的斜率,不是很简单的么--再问:求通解就能求出来对吧?再答:不用像求一般通解那么麻烦,常系数的微分方程的解就那么几个,指数的,三角的,特解也好求,指数三角另外

求曲线e^y - xy =e在x = 0处对应于曲线上的点的切线方程和法线方程

两边对x求导:y'e^y-y-xy'=0y'=y/(e^y-x)将x=0代入原方程,e^y=e,得y=1,即在点(0,1)处此时y'=1/e因此切线方程为y=x/e+1法线方程为y=-ex+1

曲线y=lnx/e^x-e^x在点x=1处的切线斜率为

直接求导:y'=(1/x)(1/e^x)-lnx/e^x-e^x.代入x=1得1/e-e.再问:你的求导好像不太对唉再答:呵呵,你自己再好好看看。

设点P在曲线y=1/2(e^x)上,点Q在曲线y=ln(2x)上则PQ长度的最小值为?

两条曲线互为反函数,是关于直线y=x对称的,点(x,e^x/2)到直线y=x的距离S=PQ/2由点到直线的距离公式得到S=|x-e^x/2|/√2令dS/dx=|1-e^x/2|√2=0得x=ln2,

求曲线e^x+e^y=x+y+2在点P(0,0)处的切线 一阶导数不存在

对e^x+e^y=x+y+2两边求导得e^x+y'e^y=1+y'y'=(1-e^x)/(e^y-1)显然当x=0,y=0时,y'=0/0型,所以y'(0)不存在

求曲线y=e的x次方 在x=0处的切线方程

对原函数求导数:(e^x)'=e^x当x=0时,e^x=1,故所求切线方程就是过(0,1)点斜率为1的直线方程(点斜式):y-1=x或:y=x+1

求曲线y=e^x在点(0,e)处的切线方程及法线方程.

y=e^x(0,1)y`=e^xk=y`/(x=0)=e^0=1y-1=x(切线方程)y=x+1k`=-1y-1=-xy=1-x(法线方程)

曲线y=e^x+x在x=0 处的切线方程为 ( )

y=e^x+xy'=e^x+1y'(x=0)=2当x=0,y=1所以切线方程是:y-1=2(x-0)y=2x+1

求由曲线y=e^x在点(0,1)处的切线与直线x=2和曲线y=e^x围成的平面图形面积

切线由求导得到斜率,代入点(0,1)得到方程y=x+1然后由定积分求面积积(e^2-x-1)从0到2,得到e^2-4

求曲线y=sin(x)/ e^x在N(0,2)点处的切线方程.

切线方程是y=x+2再问:解的过程再答:求导啊,导出来是[cos(x)×e^x-sin(x)×e^x]/e^2x,把x=0带入,得到的数是1,即为切线的斜率。y-2=1×(x-0),化简一下就行了。

求曲线e^(x+y)+xy=0在点(1,-1)处的切线与法线方程

e^(x+y)+xy=0对两边求导得:y'e^(x+y)+y+xy'=0当x=1,y=-1时,y'e^0-1+y'=02y'=1y'=1/2所以切线为y+1=1/2(x-1),即y=x/2-3/2法线

求曲线y=e^x在点(0,1)处的切线方程和法线方程

y'(x)=e^x在点(0,1)处的切线方程y=x+1法线的斜率和切线斜率相乘等于-1在点(0,1)处的法线方程y=-x+1

求曲线y=x(ln-1)在点(e,0)处的切线方程

y=x(lnx-1)求导数就是切线的斜率.y'=(lnx-1)+x*1/x=lnx在(e,0)切线斜率就是k=lne=1所以y-0=1*(x-e)y=x-e就是切线

曲线y = ln x在点( e ,1 )处切线的斜率为 ( ).

原函数的导数为(1/x)因为点(e,1)在曲线上,所以可以把x=e代人(1/x)求出斜率k=1/e

曲线y=lnx 在x=e点处的切线方程为

y‘=1/xy'(e)=1/e切线方程为y-1=(1/e)(x-e)

曲线Y=e的x次方,在点(0,1)处的切线方程

(0,1)就在曲线上,所以是切点y'=e^xx=0,y'=1所以切线斜率是1,过(0,1)所以是x-y+1=0

曲线y=e^x在点(2,e^)处的切线与坐标轴所围三角形的面积为?

切线斜率:y'|x=2=e^x|x=2=e²切线方程:y=e²(x-2)+e²=e²x-e²面积S=∫(0→2)[e^x-(e²x-e

求曲线e^y-xy=e在x=0处对应于曲线上的点的切线方程和线法方程

f=e^y-xy-edy/dx=-(df/dx)/(df/dy)=-(e^y-x)/(-y)=(e^y-x)/yx=0∴y=1dy/dx=(e-0)/1=e切线方程:y-1=exy=ex+1法线方程:

求曲线y=e^x在点(0,1)处的切线方程

切线方程和微分的太简单了,我就说下心形曲线的面积吧r=a(1+cosθ)由于上半部分和下半部分对称,所以只需求(0,PI)内的面积即可S = ∫r²dθ =&n