曲线tanx在点(π 4,1)处的曲率和曲率半径是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:44:26
曲线tanx在点(π 4,1)处的曲率和曲率半径是多少
设曲线y=y(x)在其点(x,y)处的切线斜率为4x^2-y/x,且曲线过点(1,1),求该曲线的方程.

手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x

y=ln tanx,则dy=?y=e的x次方,则y的n次方是?曲线y=e的x次方在点(0,1)处的切线方程

1、y=lntanx,则dy=y'dx=[(tanx)'/tanx]dx=[(secx)^2/tanx]dx=dx/(sinxcosx).2、y=e^x,则y(n)=e^x.3、y=e^x,则y'=e

求曲线y=sinx+cosx在点(π,-1)处的切线方程

求导,y’=cosx-sinx当x=π时,切线斜率为k=-1用点斜式自己求下吧,数学问题打字麻烦.

求曲线y=sinx在点(π/2,1)处切线方程

y'=cosxk=cos(π/2)=0切线y=1

求曲线y=tanx在点(π/4,1)处的曲率圆方程

怎么之前的答案全部不见了?!

已知曲线y=1/3x^3+3/4 1.求曲线在点P(2,4)处的切线方程.2.求曲线过点P(2,4

y'=x²1.斜率k=f‘(2)=4,∴切线方程为:y-4=4(x-2),即:y=4x-42.设切点是(m,1/3m^3+4/3)则k=f'(m)=m²∴切线方程为:y-(1/3m

已知点P在曲线y=4/e^x+1上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()A[0,π/4]

那个式子中的"+1"可以有3种位置,就有3种结果,所以建议楼主提问题时多加括号以免引起歧义,经分析,排除了2种位置,题目应该是:y=4/[(e^x)+1]∴对x求导,最后得y'=(-4e^x)/(1+

求曲线在点(1,1)处的切线方程.

y=x^(-1/2)所以y'=-1/2*x^(-3/2)x=1时切线斜率k=y'=-1/2切点是(1,1)所以切线是x+2y-3=0

曲线y=x^3-4x在点(1,-3)处的切线方程为?

y=x^3-4xy'=3x-4x=1,y'=-1y-(-3)=-1(x-1)y=-x-2

已知m是曲线y=lnx+1/2x^2+(1-a)*x上的任一点,若曲线在点M处的切线的倾斜角是均小于π/4的锐角,则实数

y'=1/x+x+1-a曲线在点M处的切线的倾斜角是均不小于π/4的锐角,则说明y'>=tanPai/4=1对于x>0恒成立.即有1/x+x+1-a>=1即有a=2实数a的范围是a

已知曲线y=(1/3)x^3+4/3 (1)求曲线在点p(2,4)处的切线方程 (2)求曲线过点P(2,4)的切线方程

曲线y=1/3x³+4/3过点P(2,4)切点不是点P设切点Q(a,a³/3+4/3)∴切线的斜率k=f'(a)=a²∴切线方程为y-(a³/3+4/3)=a&

1.曲线Y=tanx的n次方在(π/4,1)处的切线在x轴上的截距为Xn,求Y(Xn)的n趋于无穷大极限

你发个图片给我吧,你说的题目实在是不清楚,邮箱:yuntiansun@126.com,我来解试试.

曲线y=x3次-4x在点(1,3)处的切线倾斜角为

对y求导以后把1,3代入,得到切线斜率,再算倾斜角

tanx+1/tanx=4,求sin2x

∵tanx+1\tanx=4∴tan²x-4tanx+1=0∴tanx=[4±√(16-4)]/2=2±√3∴sin2x=2tanx/(1+tan²x)=2(2±√3)/[1+(2

已知曲线c:y=3x^4-2x^3-9x^2+4(1)求曲线 c在点(1,-4)处的切线与曲线C是否还有其他公共点?

①把x=1代入C的方程,求得y=-4∴切点为(1,-4),y'=12x3-6x2-18x∴切线斜率为k=12-6-18=-12∴切线方程为y=-12x+8②联立方程,得:3x4-2x3-9x2+12x

若曲线y=1/x在点P处的切线斜率为-4,则点P的坐标

y=1/xy'=-1/x^2-4=-1/x^2x=±2y=±1/2P(2,1/2)(-2,-1/2)

已知点P在曲线y=4ex+1

∵y=4ex+1,∴y′=-4e(ex+1)2<0∵k为曲线在点P处的切线的斜率,∴k的取值范围是(-∞,0).故答案为:(-∞,0).

曲线y=4x-x∧3在点(-1,-3)处的切线方程

/>y'=4-3x^2,x=-1,斜率k=4-3X1=1方程为y+3=1(x+1),即y=x-2y'=x, x=1,斜率k=1y'=6x^2-4x-7x=2,斜率k=