曲线M上的一点P到定点F1(-根3.0)F2(根3.0)的距离之和为4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:31:05
曲线M上的一点P到定点F1(-根3.0)F2(根3.0)的距离之和为4
已知曲线E上任意一点P到两个定点F1(-根号3,0)和(根号3,0)的距离之和为4.求曲线E的方程

因为两定点距离大于两焦点距离所以该曲线为椭圆依题意可知a=3c=根号3可求出b平方然后把各要素待入标准方程即可!

已知曲线F上任意一点P到两个定点F1(-根号3,0)和F2(根号3,0)的距离之差的绝对值为2

由已知可知:P点轨迹是双曲线,焦点为(-√3,0),(√3,0),a=1,b=√2.∴轨迹方程C为x²-½y²=1.设直线l:y=kx-2,A(x1,y1),B{x2,y

x^2/4-y^2=1 P为双曲线上任意一点 则P到定点M(5,0)的距离的最小值

显然P点在双曲线右支上时刻出现到M点有最小值,用双曲线的第二定义设到M距离为d到右准线距离为X所以d/X等于e(离心率)所以d=Xe当X最小时d最小显然X=a-a^2/c时最小带入数据得根号5减去2

已知曲线L上任意一点到两个定点F1(-根号3,0)和F2(根号3,0)的距离之和为4

显然是个椭圆.a=2.c^2=3.所以b=11.x^2/4+y^2=12.设直线方程为y=kx-2设C(x1,y1),D(x2,y2)所以有x1*x2+y1*y2=0带入直线方程,即x1*x2+(kx

已知曲线F上任意一点P到两个定点F1(-根号3,0)和F2(根号3,0)的距离之和为4.

显然是个椭圆.a=2.c^2=3.所以b=11.x^2/4+y^2=12.设直线方程为y=kx-2设C(x1,y1),D(x2,y2)所以有x1*x2+y1*y2=0带入直线方程,即x1*x2+(kx

高中圆锥曲线练习7.已知曲线c上任意一点P到两个定点F1(-√3,0)F2(√3,0)的距离之和为4.(1.)求曲线c的

/>(1)根据椭圆的定义,得a=2,c=√3b=√(a^2-c^2)=1曲线方程为x^2/4+y^2=1(2)设C(x1,y1),D(x2,y2)向量OC*向量OD=x1x2+y1y2=0若直线斜率不

高二文科数学题目已知曲线E上任意一点P到两个定点F1(-√3,0)和F2(√3,0)的距离之和为4. (1)求曲线E的方

(1)这是椭圆的第二定义,椭圆E的长轴为a=2,焦距c=√3,故方程为:x^2/4+y^2=1;(2)设直线斜率为k,C、D两点坐标为(x1,y1),(x2,y2);则l方程为:y=kx-2,代入椭圆

在平面直角坐标系中,已知曲线C上任意一点P到两个定点F1(-3,0)和F2(3,0)的距离之和为4.

(1)根据椭圆的定义,可知动点P的轨迹为椭圆,其中a=2,c=3,则b=a2-c2=1.所以动点P的轨迹方程为x24+y2=1.(2)当直线l的斜率不存在时,不满足题意.当直线l的斜率存在时,设直线l

已知曲线M上任意一点P到两个定点F'(-√3,0)和F''(√3,0)的距离之和为4· 1.求曲线M的方...

1、椭圆,2a=4,即a=2,c=√3,方程x²/4+y²=1;2、直线是y=k(x-2),与椭圆联立,得:(1+4k²)x²-16k²x+12=0,

已知曲线C上的任意一点P到两个定点F1(-根3,0),和F2(根3,0)的距离和是4.求曲线C的方程.2.设过(0,2)

根据定义曲线C是一椭圆,设其方程为C:x^2/a^2+y^2/b^2=1依题意有2a=4,2c=|F1F2|=2√3,所以a=2,c=√3,b^2=a^2-c^2=2^2-3=1故曲线C的方程为x^2

已知定点 ,N是圆 上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹方程是

连接ON,F2M,由于F1N=NM,F1O=F2O,可知NO为三角形中位线,于是MF2为2,连接PF1,PF2,两者相等,因为是等腰,于是F1P-F2P=MF2=2,P到两定点距离差为定值当然了,只是

曲线上任意一点到定点F(5.0)的距离及定直线m:x=16/5的距离之比为5/4,求曲线方程

设曲线上任意一点为M(x,y),根据两点距离公式和点与直线距离公式,得到方程.即为答案.再验证特殊点是否符合条件即可.

已知曲线L上任意一点到两个定点F1(-根号3,0)和F2(根号3,0)的距离之和为4.已知曲线与x轴的交点为A,B

此曲线是椭圆,且2a=4即a=2,c=√3,所以b²=a²-c²=1.其方程是x²/4+y²=1.设:P(n,m),M(x1,y1)、N(x2,y2)

在直线l:x+y+1=0上找一点p到两定点M(2,3),N(1,1)的距离和最小

作N关于L的对称点N',连接N'M与L的交点即为P点.设N'坐标是(a,b),则NN'中点坐标是((a+1)/2,(b+1)/2),此点在直线L上,即有:(a+1)/2+(b+1)/2+1=0即:a+

在直线L:x+y+1=0上找一点P,使得P到两定点M(2,3)、N(1,1)的距离和最小

再做一题:作N关于L的对称点N',连接N'M与L的交点即为P点.设N'坐标是(a,b),则NN'中点坐标是((a+1)/2,(b+1)/2),此点在直线L上,即有:(a+1)/2+(b+1)/2+1=

求回答!动点P是曲线y=2x^2+1上任意一点,定点A(0,-1),点M分PA所成的比为2:1则点M的轨迹方程是

P(x0,y0)M(x,y)根据定比分点定理,x=(x0+2Xa)/(1+2)y=(y0+2Xa)/(1+2)x0=3xy0=3y+2再代入已知的抛物线方程(3y+2)2=2*(3x)2+1思想方法是

动点P是曲线y=2x^2+1上任意一点,定点A(0,-1),点M分PA所成的比为2:1则点M的轨迹方程是

是向量点M分PA所成的比为2:1就是向量PM是向量MA的2倍即PM=2MA下面关键就是向量的坐标表示的问题啦你要求出向量PM和向量MA的坐标有向量PM=M坐标-P坐标=(x,y)-(x0,y0)=(x