cosz (1-z)^2dz
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:00:08
cosz=0的零点为kπ+π/2,也就是说在单位圆内无奇点,因此被积函数在单位圆内处处解析,由柯西积分定理,本题结果为0.
题目有问题.a没有出现在等号右边.
柯西积分定理f=1/[4(z+2)]f'=-1/[4(z+2)^2]积分f/(z-1/2)^2dz=f'(1/2)=-1/[4(1/2+2)^2]=-1/25
这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,
答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
两边同时微分:dx+2ydy+2zdz=2dzdz=1/(2-2z)dx+2y/(2-2z)dydz/dx=1/(2-2z)dz/dy=2y/(2-2z)注意:这是全微分求偏导数
cosZ=[e^(iz)+e^(-iz)]/2=2e^(iz)+e^(-iz)=4设,t=e^(iz)则,t+1/t=4t^2-4t+1=0(t-2)^2=3t=±√3+2e^(iz)=±√3+2两边
竞赛题?1.令A=2x,B=2y,C=2z,则A+B+C=π且A,B,C>0,A,B,C可以看成某个三角形三个顶角,设s=(a+b+c)/2,R是外接圆半径,r是内切圆半径,S是三角形面积8(cosx
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
答:不对.虽然(sinz)^2+(cosz)^2=1对任意复数成立.但由于sinz=[e^(iz)-e^(-iz)]/(2i)是无界的(自验),所以不正确
答案在图片上,点击可放大.
对两个式子各自求对x的导数,构成方程组,解dz/dx.对两个式子各自求对y的导数,构成方程组,解dz/dy.dx/dz=(dz/dx)^(-1),dy/dz=(dz/dy)^(-1)
在这个区域内积分函数处处解析,所以根据柯西古萨定律答案为0
你去看看留数定理那一章,一个公式就ok了
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+
1/[z(z^2-1)]=z/(z^2-1)-1/z=1/2[1/(z-1)+1/(z+1)]-1/z剩下的就自己完成吧
收敛域0<|z|<+∞由于展开式再收敛羽内一致收敛,积分和求和可交换在进一步利用重要积分注意到展开式没有-1次幂项,所以每项积分值为0所以总的积分值为0