cosx (e^x e^-x),x->无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:23:01
cosx (e^x e^-x),x->无穷
当x>1时,证明不等式e^x>xe

设:f(x)=e^x-ex则:f'(x)=e^x-e当x>1时,f'(x)>0即:函数f(x)在x>1时是递增的,则:对于任意x>1,都有:f(x)>f(1)=0成立,即:对一切x>1,有:e^x-e

∫xe^x/√(1+e^x)dx

设t=√(1+e^x),x=ln(t²-1),dx=2t/(t²-1)dt∫xe^x/√(1+e^x)dx=∫[ln(t²-1)*(t²-1)/t]*2t/(t

∫e^(-x) cosx dx

∵∫e^(-x)cosxdx=e^(-x)sinx+∫e^(-x)sinxdx(应用分部积分法)==>∫e^(-x)cosxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx

求∫ e^x * cosx

利用分部积分法,∫e^x*cosxdx=∫cosxd(e^x)=e^xcosx-∫e^xd(cosx)=e^xcosx+∫e^x*sinxdx=e^xcosx+∫sinxd(e^x)=e^xcosx+

高数 求极限x→0,lim(1+xe^x)^(1/x) 答案是e

这个用常用极限lim(1+x)^(1/x)=e就可以得出,很简单原式=lim(1+xe^x)^[(1/xe^x)e^x]=lime^(e^x)=e^1=e应该能看懂吧?看懂了就加分~再问:嗯。。看懂了

(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

y=Xe^x Cosx 的导数

y=e^x(xcosx)=e^x(xcosx)+(xcosx)'e^x=xe^xcosx+e^x*cosx-e^x*x*sinx.

∫【x(cosx+e^2x)dx】

 再问:抱歉这步是怎么来的?公式是???我是初学者,谢谢!再答:不知你问的是分部积分法还是公式法,首先,∫【x(cosx+e^2x)dx】,按乘法分配律,得到:∫【(xcosx+xe^2x)

求∫{e^x(1+x)}/{(x-xe^x)^2} dx

看起来好高端的样子,青年人网上有名师指导,高数题就是很折磨人!

【高数微积题】已知e^x=xe^(θx)+1 求lim(x->o)θ ^表示次方

请点击图片查看解题过程. 回答补充:洛必达法则的含义是:对一分数形式函数而言,如果当自变量趋于某一确定值的时候,分子、分母同时趋近于0或无穷大,那么此时就可对两者(分子、分母)同时求导数(前

求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]

1.令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1

求不定积分∫(xe^x)/(e^x+1)^2

令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d

设y=cosx+xe^y,则x=0时,dy/dx=?

x=0时,y=1dy/dx=-sinx+e^y+(xe^y)dy/dx所以dy/dx=(-sinx+e^y)/(1-xe^y)把x=0,y=1代入上式,得dy/dx=e

∫f(x)dx=xe²*求f(x) e²*+2xe²* *是x

∫f(x)dx=xe²就是求导,因为xe²*是原函数,那么f(x)就是它的导数xe^2x`=e^2x+x*2e^2x就是e²*+2xe²*

高数不定积分[xe^x/(1+e^x)]dx积分

貌似你会得不到初等函数解.

函数f(x)=0.5x^2 +e^x -xe^x

f'(x)=(0.5x^2+e^x-xe^x)'=x+e^x-e^x-xe^x=x-xe^x导数等于0时,x等于0请注意最后一项的求导结果(应用乘积函数的求导法则)(F(x)G(x))'=F(x)G'