cosx (e^x e^-x),x->无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:23:01
设:f(x)=e^x-ex则:f'(x)=e^x-e当x>1时,f'(x)>0即:函数f(x)在x>1时是递增的,则:对于任意x>1,都有:f(x)>f(1)=0成立,即:对一切x>1,有:e^x-e
设t=√(1+e^x),x=ln(t²-1),dx=2t/(t²-1)dt∫xe^x/√(1+e^x)dx=∫[ln(t²-1)*(t²-1)/t]*2t/(t
∵∫e^(-x)cosxdx=e^(-x)sinx+∫e^(-x)sinxdx(应用分部积分法)==>∫e^(-x)cosxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx
利用分部积分法,∫e^x*cosxdx=∫cosxd(e^x)=e^xcosx-∫e^xd(cosx)=e^xcosx+∫e^x*sinxdx=e^xcosx+∫sinxd(e^x)=e^xcosx+
这个用常用极限lim(1+x)^(1/x)=e就可以得出,很简单原式=lim(1+xe^x)^[(1/xe^x)e^x]=lime^(e^x)=e^1=e应该能看懂吧?看懂了就加分~再问:嗯。。看懂了
前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x
y=e^x(xcosx)=e^x(xcosx)+(xcosx)'e^x=xe^xcosx+e^x*cosx-e^x*x*sinx.
再问:抱歉这步是怎么来的?公式是???我是初学者,谢谢!再答:不知你问的是分部积分法还是公式法,首先,∫【x(cosx+e^2x)dx】,按乘法分配律,得到:∫【(xcosx+xe^2x)
看起来好高端的样子,青年人网上有名师指导,高数题就是很折磨人!
请点击图片查看解题过程. 回答补充:洛必达法则的含义是:对一分数形式函数而言,如果当自变量趋于某一确定值的时候,分子、分母同时趋近于0或无穷大,那么此时就可对两者(分子、分母)同时求导数(前
1.令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1
令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d
x=0时,y=1dy/dx=-sinx+e^y+(xe^y)dy/dx所以dy/dx=(-sinx+e^y)/(1-xe^y)把x=0,y=1代入上式,得dy/dx=e
∫f(x)dx=xe²就是求导,因为xe²*是原函数,那么f(x)就是它的导数xe^2x`=e^2x+x*2e^2x就是e²*+2xe²*
貌似你会得不到初等函数解.
f'(x)=(0.5x^2+e^x-xe^x)'=x+e^x-e^x-xe^x=x-xe^x导数等于0时,x等于0请注意最后一项的求导结果(应用乘积函数的求导法则)(F(x)G(x))'=F(x)G'