cos2c等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:03:39
cos2c等于
三角函数问题:三角形ABC中 SinA(SinB+CosB)=SinC SinB+Cos2C=0 求A B C的大小

sina(sinb+cosb)-sinc=0sinasinb+sinacosb-sin(a+b)=0sinasinb+sinacosb-(sinacosb+cosasinb)=0sinasinb-co

已知三角形ABC中,sinA(sinB+cosB)-sinC=0,sinB-cos2C=0求角A、B、C分别多大?

sinA(sinB+cosB)-sinC=0-----sinB(sinA-cosA)=0sinA=cosA,A=45sinB-cos2C=sinB-cos(2B+90)=sinB-sin2B=sinB

在三角形ABC中,已知cos2A+cos2B-cos2C=1,试判断三角形ABC的形状

cos2A+cos2B=2cos(A+B)cos(A-B)1+cos2C=2(cosC)^2cos(A+B)=-cosC-cosCcos(A-B)=(cosC)^2所以cosC=0或-cos(A-B)

在三角形ABC中,角A.B.C所对的边分别为a.b.c,已知cos2C等于负九分之一,其中C...

(1)cos2C=1-2(sinC)^2=-1/9sinC=√5/3(2)2sinC等于根五倍的sinA,得2c=√5a,c=√5,cos=2/34+b^2-2*2bcosC=5,b=3b=3,c=√

在三角形abc中 角A,B,C所对的边分别是a b c 已知cos2c等于负四分之一

∵cos2c=1-2sin^2C∴sinC=√10/4CosC=√(1-10/16)=√6/4CosA=√(1-10/64)=3√6/8b=AD+CD=4*3√6/8+2*√6/4=2√6根据正弦定理

在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c已知cos2C=-3/4

(1)因为cos2C=cos(C+C)=(cosC)平方-(sinC)平方=-3/4(cosC)平方+(sinC)平方=1得(sinC)平方=7/8所以,sinC=根号14/4(2)

在锐角三角形ABC中,角A B C所对的边分别为a b c已知cos2C=-3/4 1 求sinC

cos2C=1-2sin^2C=-3/4则sin^2C=(1+3/4)/2=7/8sinC=√14/4当c=2a且b=3√7时,由cosC=√(1-sin^2C)=√2/4所以在三角形中,由余弦定理得

在三角形ABC中,角A,B,C所对的边分别为a,b,c,已知cos2C= -1/4 求sinC的值

cos2C=-1/4所以cos2c=1-2(sinc)^2=-1/4可得sinc=+—根号10/4又因为角c为三角形内角所以正弦值是正数所以sinc=根号10/4

在三角形ABC中,角A,B,C的对边分别是a,b,c,且cos2C=1-8b²/a²

1-cos2C=2(sinC)^2三角形中sinC>0则sinC=2b/a=2sinB/sinA=2sin(A+C)/sinA1/2sinA*sinC=sinA*cosC+sinC*cosA同除以si

△ABC中,tanA,tanB是3x2+8x-1=0的两个实数根,则4sin2C-3sinCcosC-5cos2C=__

△ABC中,tanA,tanB是3x+8x-1=0的两个实数根,可得tanA+tanB=-83,tanAtanB=-13,所以tan(A+B)=tanA+tanB1-tanAtanB=-8343=-2

在三角形ABC中,已知sinA(sinA+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小

sinC=sin(π-(A+B))=sin(A+B)cos2C=cos2(π-(A+B))=cos2(A+B)∴sinA(sinB+cosB)-sin(A+B)=0sinAsinB+sinAcosB)

证明:锐角三角形ABC中,cos2A+cos2B+cos2C

cos2A+cos2B+cos2Ccos2A+cos2B+cos2C=(cos2A+cos2B)+(cos2B+cos2C)+(cos2A+cos2C).用和差化积公式cos(a)+cos(b)=2c

已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是 ___ .

∵A,B,C成等差数列,∴2B=A+C,又A+B+C=π,∴B=60°,即A+C=120°,cos2A+cos2C=1+cos2A2+1+cos2c2=1+cos2A+cos2C2=1+cos(A+C

在三角形ABC中,若cos2A+cos2B+cos2C=-1,试判断三角形ABC的形状?

由正弦定理得a/sinA=b/sinB,因为acosA=bcosB,所以sinAcosB-cosAsinB=sin(A-B)=0,所以∠A=∠B.cos2A+cos2B-cos2C=2cos2A-co

在三角形ABC中,若cos2A+cos2B+cos2C=-1,试判断三角形ABC的形状是什么三角形,求过程,

cos2A+cos2B=2cos(A+B)cos(A-B)1+cos2C=2(cosC)^2cos(A+B)=-cosC-cosCcos(A-B)=(cosC)^2所以cosC=0或-cos(A-B)

△ABC中,已知cos2A+cos2B-cos2C=1,判断形状.

超简单~的思路一般都是联系条件(三角形)那么就把“大角化小角,一步一步慢慢走咯(柴)”.1-2sin^2A+1-2sin^2B-1+2sin^2C=1得sin^2A+sin^2B=sin^2C在用上正

在三角形ABC中,角A,B,C的对边分别为a,b,c,若sin2 2C+sin2C•cos2C+cos2C=

sin²2C+sin2C×sinC+cos2C=1,4sin²C*cos²C+2sin²CcosC+1-2sin²C=1,2cos²C+co

在三角形ABC中,求cos2A+cos2B+cos2C的最小值

这属于多变量的极值问题,可以采取所谓的“冻结变量法”.显然A,B,C三个角中至少有两个锐角,不妨假设C为锐角,固定角C不变,由和差化积公式:cos2A+cos2B=2cos(A+B)cos(A-B)=

ABC为三角形内角,Sin(A+B)=cos2C,求角C

sin(A+B)=cos2Csin(180-C)=1-2sin²CsinC=1-2sin²C2sin²C+sinC-1=0(sinC+1)(2sinC-1)=0C是内角则

在三角形ABC中,已知(a+b)/a= sinB/(sinB -sinA),且cos(A-B)+cosC=1-cos2C

根据正弦定理,(a+b)/a=sinB/(sinB-sinA)=(sinA+sinB)/sinA∴sinA·sinB=(sinB+sinA)(sinB-sinA)=2sin[(B+A)/2]·cos[