明(a b)(b c)(c a)大于等于8abc,(a,b,c为正实数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:55:58
法1切线法下证:a^2-3a+2(a)^0.5>=0,设t=(a)^0.5即证明t*(t-1)^2*(t+2)>=0,显然.故a^2+2(a)^0.5>=3a,b^2+2(b)^0.5>=3b,c^2
a-b=√3+√2b-c=√3-√2相加a-c=2√3a²+b²+c²-ab-bc-ac==(2a²+2b²+2c²-2ab-2bc-2ac
(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)=a^2(b-c)+b^2(c-a)+c^2(a-b)=a^2(b-c)+b^2(c-b+b-a)+c^2(a-b)=a^2(b-c)
利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2
这是类非常经典的题目,注意到a,b,c在2式中地位一样,即它们可以互相代替果把a变b,b变a,题目连变都没变,遇到这种类型的题目,一定是当a=b=c时取到极值,这样易得答案是1.5而证明的话,高中用基
因为a^+b^2+c^2-(ab+bc+ac)=[2a^2+2b^2+2c^2-(2ab+2bc+2ac)]/2=[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
先证AB+BC大于AP+PC这个只要延长AP交BC于D然后AB+BD大于AP+PDPD+DC大于PC这两个相加,AB+BD+DC大于AP+PC也就是AB+BC大于AP+PC然后把ABC换两次,就得到了
运用基本不等式a+b+c=(1/2)*(2a+2b+2c)=(1/2)*((a+b)+(a+c)+(b+c))≥(1/2)*(2√ab+2√ac+2√bc)=√ab+√ac+√bc当且仅当a=b,a=
(1)a+b>=2根号ab,a+c>=2根号ac,b+c>=2根号bc所以(a+b)+(a+c)+(b+c)>=2根号ab+2根号ac+2根号bc两边除以2就得到结论了.(2)同理可得:1/2*2(b
(a+b)(b+c)(c+a)=(a+b+c-a)(a+b+c-b)(a+b+c-c)=(a+b+c)(ab+ac+bc)-abc9(a+b+c)(ab+ac+bc)-9abc-8(ab+bc+ca)
a^2+b^2+c^2=1/2(a^2+b^2+c^2+a^2+b^2+c^2)>=1/2(2ab+2ca+2bc)=ab+bc+ca(当a=b=c是取等号)又abc两两不等故a^2+b^2+c^2>
ab≤(a^2+b^2)/2bc≤(b^2+c^2)/2ca≤(c^2+a^2)/2三个相加得ab+bc+ca=1≤a^2+b^2+c^2∴a^2+b^2+c^2≥1不等式两边同时加上2×(ab+bc
设,其中1个小于0那么abc
先排序,a>b>c(可以等于,不方便打)又abc>0,若c>0,则得证,所以只有另一种情况b0,又ab+bc+ac=a(b+c)+bc>0a>-b-c所以(-b-c)(b+c)+bc=-(b^2+bc
1.(a-b)^2+(a-c)^2+(b-c)^2>=0a^2+b^2+c^2>=ab+bc+ca2.a-
不等式两方同时乘以二,不改变方向将右方式子移向左方变号相减,使不等式右方大于等于零展开左方式子组合式子得到A减C的完全平方+B减C的完全平方+A减B的完全平方大于等于零抱歉中间的简单运算自己算啦
-2,0,2,4ab/|ab|bc/|bc|ca/|ca|abc/|abc|这四项中每一项都为1或-1,分类讨论a、b、c都是正数时,原式=4a、b、c中2正1负时,原式=-2a、b、c中1正2负时,
两边同时*2,将右边所有项移到左边得a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0(a-b)2+(a-c)2+(b-c)2=0because(a-b)2,(a-c)2,(b-c)2>=
/>3个正数原式=1+1+1+=42个正数,1个负数原式=1-1-1-1=-21个正数,2个负数原式=-1+1-1+1=03个负数原式=1+1+1-1=2
角2=角ABC+角BAC角BAC=角1+角AEF所以角2>角BAC>角1