无限长均匀带电直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:09:17
这道题考察的主要是点电荷电场分布,以及微元、积分的思想.紧邻P1点左右两侧各L/4长的电荷在P1点产生的场强相互抵消.P1点的实际场强,是距其右侧L/4、长L/2的一段细杆带的电荷在P1点产生的场强.
高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一
将均匀带电细杆分成四小段(均匀分开)命名杆正中为cab上电荷的静电场在P1处的场强即为bc段在P1处的场强ab上电荷的静电场在P2处的场强即为ab段在P2处的场强设ab带电量为Q则E1=0.5Q/0.
我是假设电荷是同种的、异种的同理简单推一下就行、首先在距离左棒X出左棒产生的电场强度E为1/4πε∫dQ/r²、对于空间中距离左棒右边的点距离为R处电场强度E=1/4πε∫λdx/x&sup
使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
应用高斯定理设线密度为p去长为L的圆柱为高斯面,E*ds积分=电量q/真空介电常数所以有E2*pi*r*L=p*L/真空介电常数.两边消掉L即可求出E再问:是圆柱体场强啊,应该是体密度吧?我也是这么算
真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod
可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)
物理书上有无限长的带电导线在线外任意一点产生的场强的公式,自己看吧那个东西实在不好打
外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.
采用高斯定理,建立坐标积分求解.(电势和场强).问题是求什么?求相互作用力,还是场强?或者电势?
电荷线密度为入的无限长均匀带电直线外的场强为E=2k入/rr1和r2的两点之间的电势差设为UdU=Edr=2k入dr/r=2k入lnrU=2k入[(lnr1)-(lnr2)]=2k入ln(r1/r2)
这里可以用高斯定理.首先确定那一条线肯定在这两根线的平面,对两根线做高斯圆柱面,圆柱高h,底面半径是R,x的那条由高斯定理得到E*2πRh=xh/ε则任一点由x产生的场强是Ex=x/(2πRε)同理y
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
由射线和直线的意义可知:直线和射线都是无限长的.故答案为:正确
E1=λ1/(2π*ε0R1),E2=λ2/(2π*ε0R2),E1-E2=λ1/(2π*ε0R1)-λ2/(2π*ε0R2)=0;R1+R2=d,解得:R1=λ1d/(λ1+λ2)