无限长均匀带电圆柱体绕轴旋转磁感应强度分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:08:15
对啊.就是圆半径就是10厘米高12厘米和半径12厘米高10厘米的两个圆柱体.半径是10厘米高12厘米3.14*10*10=314平方厘米(底面积)2*3.14*10*12=753.6平方厘米(侧面积)
B:A=5*5*3.14*7:7*7*3.14*5=5:7
高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一
表面积是78π体积是90π
两题均运用高斯定理,那个积分式打不出来就跳过直接下一步了,设圆柱半径R01.在带电圆柱内取半径为r,高度为l的圆筒形高斯面,有E·2πrl=ρπr²l/ε,得E=ρr/(2ε),rR0
使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ
长边为轴,则:半径=2.5厘米高=6厘米侧面积=底面周长×高=2×3.14×2.5×6=94.2平方厘米表面积=2×底面积+侧面积=2×3.14×2.5²+94.2=133.45平方厘米再问
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2
高10半径3底面周长3.14x3x2=12.56底面积3.14x3x3=28.26侧面积12.56x10=125.6表面积125.6+28.26x2=182.12
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
应用高斯定理设线密度为p去长为L的圆柱为高斯面,E*ds积分=电量q/真空介电常数所以有E2*pi*r*L=p*L/真空介电常数.两边消掉L即可求出E再问:是圆柱体场强啊,应该是体密度吧?我也是这么算
长为轴时即圆柱体r=4cm,h=3cm表面积=πr^2*2+2πr*h=40π(cm^2)宽为轴即圆柱体r=3cm,h=4cm同上公式=36π(cm^2)手机提问的朋友在客户端右上角评价点【满意】即可
真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod
可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)
物理书上有无限长的带电导线在线外任意一点产生的场强的公式,自己看吧那个东西实在不好打
外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
这是大物(下)的题.因同轴圆柱体的电流分布具有轴对称性,故圆柱体中各区域的磁感应线都是以圆柱轴线为对称轴的同心圆.在内导体圆柱中作一半径为r、和轴线同心的圆环形闭合回路,回路绕行方向与磁感应线方向相同