无穷小替换根号1-x^2-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:49:44
加减不能等价替换说的是部分,如果把加减整体一块替换,有时候还是可以的,这个关键要看是不是等价无穷小,也就是说替换的因子和被替换的因子是不是等价无穷小比如说这道题,sinx+cosx能不能用1+x替换,
1/6因为x趋于零时,x^2是x^1/2的高阶无穷小,所以令原式除以x的k次方等于常数,则[x^1/2+o(x^1/2)]^1/3/x^k={[x^1/2+o(x^1/2)]/x^3k}^1/3=A(
lim(x->∞)(2x^2-1)/(x^3+x-1)=0x->+∞,arctanx->π/2;x->-∞,arctanx->-π/2当x->∞时,(arctanx+cosx+1)为有界函数,无穷小与
x-->0则√(1+x)-√(1-x)=2x/【√(1+x)+√(1-x)】=x再问:我想知道=2x/【√(1+x)+√(1-x)】=x这一步怎么直接得到x的?再答:lim【√(1+x)+√(1-x)
x→0时,令y=x+[√(1+x²)-1]则lim(x→0)[y/x]=lim(x→0)[x+[√(1+x²)-1]]/x=lim(x→0)[1+[√(1+x²)-1]/
lim[√(1+tanx)-√(1-sinx)]/x^k=常数,下面求k分子有理化=lim[√(1+tanx)-√(1-sinx)][√(1+tanx)+√(1-sinx)]/(x^k[√(1+tan
由于是手机回答,符号不太好打,我就说一下~第一个把分子换成x的n次方,下面是x的m次方,第二个是把分母换成sinx的三方,化简后把cosx先算出来为1,后面你就知道了
1-cosx可以替换为1/2x^21+cosx就不可以了替换了关键是limfx/gx=1x—>0再问:既然这样,那麻烦您帮我看看这道题,lim(x趋向0)(3sinx+x^2cos(1/x))/((1
x->0时,ln[x+√(1+x^2)]=ln{1+[√(1+x^2)+x-1]}~√(1+x^2)+x-1=√(1+x^2)-1+x~x^2/2+x~x原式=lim{x->0}x/x=1
lim[ln(1+u)/u]=u→0lim[ln(1+u)^(1/u)]=u→0=lne=1
你的答案是哪来的,我觉得就是用等价无穷小代换啊,上边代换成x,下边代换成xln2,最后答案为1/ln2再问:原题是当x趋向于0,求lim(1+x)^(1/x^2)再答:哦,我刚才也搞错了,我把下边看成
我想问你两个问题:1.x是趋向无穷小还是趋向无穷大?2.是题目规定要用等价无穷小去做吗?由于在和式中,应该用不到等价无穷小来解,个人认为应该可以用泰勒公式去进行展开来解.不过由于条件不清楚,我暂时还没
这个不可以的,只有在完全乘法或除法的情况下,才可以用等价无穷小的替换再问:第二个x/sinx(cosx+x)~sinx/sinx(cosx+x)也不能等价是么?然后最后那道题呢。。如果是x/sinxc
(根号下1+bx^2)-1~bx^2/2~x^2则b=2
通过泰勒公式可以在0点展开ln(x+√(1+x^2):ln(x+√(1+x^2)=x+o(x)o(x)表示余项是x的高阶无穷小所以代入原式=limln(x+√(1+x^2))/x=lim[x+o(x)
因为sin(1/x^2)不存在极限只能根据定理【无穷小*有界函数=无穷小】再问:那运用无穷小替换时应该注意什么条件呢?比如什么情况下能用什么情况下不能用?再答:首先是当x趋近于0时其次函数当x趋近0时
lim(x->0)[√(1+x+x^2)-1]/(x/2)(这是0/0型,运用洛必达法则得=lim(x->0)[(1+2x)/√(1+x+x^2)=1所以[√(1+x+x^2)-1]x/2(x→0)再
等价无穷小代换不能随便乱用,一般来说,如果该项是参与乘法或者除法运算的话就可以用,例如lim[x->0,ln(1+x)/sinx]这时ln(1+x)是x的等价无穷小,sinx是x的等价无穷小,所以都可
x分母有理化