旋转抛物面不包括上面的盖子吧

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:59:41
旋转抛物面不包括上面的盖子吧
求旋转抛物面面积(重积分的应用)

即底半径为4,高为4的正圆锥的侧面积=2π×4×√﹙4²+4²﹚/2=16√2π﹙面积单位﹚这是初中的几何题,与旋转抛物面无关.除非你是x=y².再问:但是确实在我高等数

求旋转抛物面z=x2+y2被平面z=1所截下的有限部分的面积

z=1与z=x^2+y^2联立:x^2+y^2=1,z=1.这个曲线为以(0,0,1)圆,其中半径为1.所以面积S=πr^2=π

求旋转抛物面z=x²+y²;到平面x+y+z=1的最短距离.

空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z

求旋转抛物面z=x^2+y^2及平面z=1所围成的质量均匀分布的物体的形心

形心?质心?再问:质心就是形心‘没对啊答案不一样就是没步骤能再做一下吗?再答:复查了,我的计算没问题,你的答案是多少?再问:(0,0,2/3)再答:自变量、因变量,反了。括号里面应当是:根号z。再问:

旋转抛物面和椭圆抛物面是不是一样

不同,旋转抛物面的轴截面是圆形,椭圆抛物面的轴截面是椭圆!

怎样计算旋转抛物面的面积?已知抛物面方程X*X+Y*Y=4fZ,Z的范围0~h

fZ是什么意思再问:f是一个常数,Z是变量再答:答案为16π*f*h²/3

什么是旋转抛物面啊?

举个最典型的例子,在yoz平面的关于z轴对称的抛物线绕z轴旋转就是旋转抛物面

计算由平面Z=0及旋转抛物面Z=1-X²-Y²所围成的立体的体积

旋转抛物面z=1-x^2-y^2与z=0(xoy平面)交线为一个半径=1的圆,方程为x^2+y^2=1,设该圆在第一象限部分与X轴和Y轴围成区域为D,根据对称性,V=4∫【D】∫(1-x^2-y^2)

饮水机上面的塑料桶,用什么东西吧塑料桶的盖子封装好

有一种塑料管,叫《热缩管》套一后用热风吹吹它就会收缩,而且很紧密.是属于电器和包装类的,网上有售.

天气变冷,发现热水瓶盖子打不开了.类似于矿泉水瓶那种旋转的盖子,现在怎么旋都旋不开

给热水瓶一个相对温度较高的环境,主要原因是瓶内空气因为变冷后体积收缩导致瓶内气压过低,外压相对增大,才不容易打开.给热水瓶一个相对温度较高的环境,经过比较唱的时间后,瓶内空气会相对升温的,到时候会比较

洗手盘水的旋转方向(盖子拔掉的情况下)

你做错了装水的瓶子要静静放着水要保持平静,不能动的然后再拔下塞子,就可以观察到了

求由圆柱面x2+y2=2ax,旋转抛物面az=x2+y2及z=0所围成的立体的体积

在电脑上画这种图确很困难,就免了吧!此类二重积分最好用极坐标进行计算.积分域D:由x²+y²=2ax,得(x-a)²+y²=a²,这是一个园心在(a,

旋转抛物面z=2-x^2-y^2与xy坐标面所围成的立体的体积

z=∫∫Dzdxdy,(D:x^2+y^2再问:请问能在写的详细一点吗?∫∫Dzdxdy中的Dz是什么意思?再答:D代表积分区域,z代表积分函数再问:∫(0,2π)dθ∫(0,√2)a(2-a^2)d

作出球面:x的平方+y的平方+z的平方=8与旋转抛物面:x的平方+y的平方=2z 的交线

联立方程组,消去(x平方+y平方),得z=2(易知0),把z=2代入第一个方程,得x平方+y平方=4,所以相交的曲线是:{x平方+y平方=4,z=2}(曲线在平面的投影是x平方+y平方=4的圆

x^2+y^2=z的图像怎么画,旋转抛物面

你可以分别令x=0,则y²=zy=0,则x²=z再答:再答:还有什么地方不是很明白再答:可以追问再问:恩,让我先看看再问:再问:那这个会吗?再问:图都画不出来再答:该不是在纸上画吧

旋转抛物面的应用

一·用于反射几乎一切波!1.电磁波(光波),有灯罩,太阳灶,光能发电场的玻璃排列.2.电磁波(无线电波),有雷达的发射和接收天线,卫星接收天线等等3.声波,超声波击碎结石的治疗仪.二·仿锥体仿锥体的前

谁知道那里有卖纯净水桶上面的绿盖子的?盖子坏了想买一个用用!

府城小区北门东30米路南有个纯净水站,你去望望吧查看原帖

旋转液体抛物面公式推导

盛有液体的开口圆桶,设圆桶以定转速绕其中心铅垂改旋转,则由于液体粘性的作用,与容器壁接触的液体层,首先被带动而旋转,并向中心发展,使所有的液体质点都绕该轴旋转.待运动稳定厉,各质点都具有相同角速度,液

解析几何中,旋转抛物面的方程推导

x=0时,y^2=2pz.绕z轴旋转,旋转半径R^2=2pz在xoy平面上,轨迹是O(0,0)为圆心,半径R^2=2pz的圆即x^2+y^2=2pz