方阵满足方程A平方-2A 4I=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:50:59
方阵满足方程A平方-2A 4I=0
线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;

因为A^2=E所以(A-E)(A+E)=0题目是不是有问题

设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/72,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,

方阵AB=BA方阵A和方阵B需要满足什么条件?

没有一般的充要条件.只是充分条件的话,貌似有一个是正交阵就可以?

方阵A满足A^2+A-I=0,证明:A可对角化

条件(A-aE)(A-bE)=0,其中ab不相等,则A可对角化.证明:当AB=0时有不等式r(A)+r(B)再问:原式怎么化解?具体步骤是什么?再答:x^2+x-1=0,解为a=[-1+根号(5)]/

设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.

由题设得到A(A-E)=2E,那么A的逆就是1/2(A-E)而类似的(A+2E)(A-3E)=A²-A-6E=-4E,所以(A+2E)的逆为-1/4(A-3E)

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

设n阶方阵A满足A平方=En,|A+En|不等于0,证明:A=En.

证明:由A^2=En得0=A^2-En=A^2-En^2=(A+En)(A-En)因为|A+En|≠0,故A+En必有逆矩阵(A+En)^(-1),上式两边左乘(A+En)^(-1),便得(A+En)

设方阵A满足的平方-2A-E=0 ,证明A-2E 可逆,并求 (A-2E)的-1次方

因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?

证明:因为A^2-2A+3I=0所以A(A-2I)=-3I所以A可逆,且A^-1=(-1/3)(A-2I).又由A^2-2A+3I=0得A(A-3I)+A-3I+6I=0所以(A-3I)(A+I)=-

设方阵A满足A平方+3A-E=0,则 (A+3E)的负1次方等于

A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A

设方阵A满足方程A平方-3A-10E=0,则A-1次方=

由:A^2-3A-10E=0得:A^2-3A=10E得:(1/10)[A^2-3A]=E即:(1/10)A(A-3E)=E.按定义有:A^(-1)=(1/10)(A-3E).(若AB=E,则A^(-1

设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.

A^2-2A+4I=0A^2-2A-3I=-7I(A+I)(A-3I)*(-1/7)=I所以A+I和A-3I都可逆,且A+I的逆矩阵为(3I-A)/7A-3I的逆矩阵为-(A+I)/7

已知四阶方阵A满足|A-E|=0,方阵B=A^3-3A^2,满足BB^T=2E,且|B|

已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0

n阶方阵A满足,A的平方=0,证A的秩大于等于n/2

(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所

如果方阵A满足A平方-A-2E=0,试证A+2E可逆,并求A+2E的逆

A^2-A-2E=0A^2-A-6E=-4E(A+2E)(A-3E)=-4E(A+2E)[(A-3E)/-4]=E逆为[-(A-3E)/4]