方阵A可逆的充分必要条件是齐次线性方程组 只有零解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:13:51
方阵A可逆的充分必要条件是齐次线性方程组 只有零解
试证:矩阵A可逆的充分必要条件是:它的特征值都不等于0

有个定理证明:因为A的行列式等于它的所有特征值的乘积所以A可逆|A|≠0A的特征值都不等于0

急求解线代证明题!A为n阶方阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆.

用反证法.假设A不可逆,则齐次线性方程组AX=0有非零解.而若x0是Ax=b的一组解,对AX=0的任意一个非零解x1,可知x0+x1也是Ax=b的解,即Ax=b不止一组解.于是Ax=b要么无解,要么不

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

试证明:实对称矩阵A是正定矩阵的充分必要条件是存在可逆矩阵P,使A=PTP

A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,P=CQ是可逆阵.反之,A=P^TP,

:设A是元素为整数的n阶方阵,则存在元素为整数的n阶方阵B,使得AB=E的充分必要条件

存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0

线性代数:n阶实方阵A是正交矩阵的充分必要条件是A的n个行向量是标准正交向量组

题解中设A是三个行向量(即把A的每一行看做一个向量,这个是第一步您应该明白)第二个等号就是分块矩阵的乘法A是正交矩阵,所以,题解中就有“所以”后面的东东了希望我的解释能够帮到您

试证:矩阵A可逆的充分必要条件是:它的特征值都不等于零

知识点:n阶矩阵A的行列式等于其所有特征值的乘积.所以A可逆|A|≠0A的特征值都不等于0.

设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值.

设f(x)=(x-b_1)(x-b_2).(x-b_n)即b_1,b_2,...,b_n是B特征根.则f(A)=(A-b_1E).....(A-b_nE)det(f(A))=det(A-b_1E)..

矩阵不可逆的充分必要条件

A矩阵不可逆|A|=0A的列(行)向量组线性相关R(A)

n阶方阵A与对角矩阵相似的充分必要条件是A有?

n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量![证明]充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXii=1,2,……,nA[X1X2……Xn]=[入1X1

A的充分必要条件是B,请证明充分性.

不用证明了吧,A的充分必要条件是B就已经有充分性了,不论是A对于B还是B对于A

线性代数与解析几何设N阶方阵A的N个特征值互异,B是N阶可逆阵.证明AB=BA(充分必要条件)存在可逆阵P使得P逆AP和

由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应

设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆

证明:Ax=b有唯一解,那么r(A,b)=r(A)=n,而A为n阶矩阵,所以r(A)=n可以得到A可逆同理,n阶矩阵A可逆,那么r(A)=n,而增广矩阵r(A,b)显然此时等于r(A),所以r(A,b

证明n阶方阵A可逆的充分必要条件是A与n阶单位阵等价,求救啊,刘老

A总可经初等变换化为等价标准形H=Er000即存在可逆矩阵P,Q使得PAQ=H当A可逆时,|A|≠0,故|H|≠0,此时H中没有0行,即r=n,所以A的等价标准形为En反之,由PAQ=En知|A|≠0

n阶矩阵A可逆的充分必要条件是(  )

对选项(A)和(B):举反例A=1212,任一行列向量都是非零向量,但A不可逆;故排除选项A和B.对选项(C):举反例,如A为n阶方阵,.A为增广矩阵,当:r(A)=r(.A)<n时,Ax=b有无穷多

设a,b,c都是n阶矩阵,证明abc可逆的充分必要条件是a,b,c都可逆

因为|ABC|=|A||B||C|所以|ABC|≠0的充分必要条件是|A|,|B|,|C|都不等于0故ABC可逆的充分必要条件是A,B,C都可逆.