方程f^2(x)-tf(x) 1=0有四个实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:20:50
方程f^2(x)-tf(x) 1=0有四个实数根
已知函数f(x)=|xe^x|,方程f(x)^2+tf(x)+1=0(t属于R)有四个实数根,求t的取值范围

这个简单多了吧?|xe^x|是偶函数单调性很简单,四个实数根就是要f(x)^2+tf(x)+1=0有两个大于0的零点那就是对称轴大于0,判别式大于0就是t小于-2再问:|xe^x|不是偶函数啊再答:不

设f(t)=∫e^(-x^2)dx,求∫tf(t)dt=?

letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2

微积分题求解设f(x)可微,f(0)=0,f'(0)=1,F(x)=∫tf(x²-t²)dt(注:积

变量代换:x²-t²=u两边微分:0-2tdt=du在没有积分之前,变量是t,x是积分的上限所以:tdt=-(1/2)du又因为:x²-t²=u,t:0--->

设f(x)连续,d/dx∫上标x下标0tf(x^2-t^2)dt=?

找你这道题找得我好辛苦啊!解法一:换元法!令u=x∧2-t∧2,则t=√(x∧2-u)当t=0时,u=x∧2,当t=x时,u=0.且dt=(-1)/2√(x∧2-u)∴原式=∫f(u)*√(x∧2-u

已知tf(2x-t)dt(0,x)的不定积分,且f(1)=1,求f(x)dx(1,2)的不定积分

F(x)=∫(0,x)tf(2x-t)dt(2x-t=u)=∫(2x,x)(2x-u)f(u)d(-u)=∫(x,2x)(2x-u)f(u)du=2x∫(x,2x)f(u)du-∫(x,2x)uf(u

f(x)在区间[0,1]上连续,则函数F(x)=∫(0,x) tf(cost)dt在[-π/2,π/2]是 A.奇函数B

F'(x)=xf(cosx),这个函数显然是奇函数,奇函数的原函数必为偶函数.选B.选择题要用最快捷的方法解决,不能花太多时间.再问:偶函数的原函数是什么呢?再答:偶函数的原函数是奇函数或非奇非偶。原

设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函

答:f(x)=2sinx+cosxf(x)=1+2x+∫(0~x)tf(t)dt-x∫(0~x)f(t)dt...(1)f'(x)=2+xf(x)-[∫(0~x)f(t)dt+xf(x)]f'(x)=

设f(x)连续,Y=∫0~X tf(x^2-t^2)dt 则dy/dx=?

y=∫[0,x]tf(x²-t²)dt令u=x²-t²,du=-2tdt当t=0,u=x²;当t=x,u=0y=∫[x²,0]tf(u)*d

设f(x)为连续函数,且满足tf(t)在区间(1,x)上对t的积分等于xf(x)+x^2,求f(x).

∫(1,x)tf(t)dt=xf(x)+x^2,当x=1时,0=1*f(1)+1^2=f(1)+1,f(1)=-1,两边对x求导数xf(x)=f(x)+xf'(x)+2x,初值条件为f(1)=-1,解

已知f(x)=1-(2/2的x次方 +1).tf(x)>=2x平方-2恒成立.x属于(0,1】.求t的取值范围

分离变量,因为f(x)在(0,1】上恒大于0,所以分离得t>=(2x^2-2)(2^x+1)/(2^x-1)所以只需t大于右侧函数最大值,右侧易知在(0,1】为增函数,所以t>=0再问:右侧那个函数,

已知函数f(x)=x|x-a|+2x.若存在a∈[-3,3],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,

当-2≤a≤2时,f(x)在R上是增函数,则关于x的方程f(x)=tf(a)不可能有三个不等的实数根,…(2分)则当a∈(2,3]时,由f(x)=x2+(2−a)x,x≥a−x2+(2+a)x,x<a

定积分∫[a,x]tf(t)dt导数怎么求?答案是xf(x)-1/2∫[a,x]tf(t)dt

你这题目有问题∫[a,x]tf(t)dt的导数就是xf(x)再问:∫[0,x]tf(t)dt的积分才是xf(x),但是现在下线不是0,是a.再答:你去看看莱布尼兹公式,下限时任意常数再问:我知道莱布尼

定积分∫tf(x-t)dt(0到x)=1-cosx,则∫f(x)dx(0到π/2)

连点分也不给,不过做出来了就写给你吧~

高一数学,请写清步骤已知函数f(x)=2^x-1/2^|x|1)若f(x)=2.求x的值2)若2^tf(2t)+mf(t

1)你可以分类.当X>=0时,f(x)=2^x-1/2^x因为f(x)=2所以2^x-1/2^x=22^(2x)-2^(x+1)-1=0然后把配成完全平方得:(2^x-1)^2-2=0所以X=log2

17,设f(x)为可导函数,且满足∫0到x tf(t)dt=f(x)+x^2 求f(x)

∫[0→x]tƒ(t)dt=ƒ(x)+x²、两边求导xƒ(x)=ƒ'(x)+2x-->xy=y'+2xdy/dx=xy-2x=x(y-2)dy/(y-

求参数方程导数x=f'(t),y=tf'(t)-f(t)

y=tf'(t)-f(t)首先这个式子在求导的时候是对t求导,你要搞清楚那么y`就是对tf'(t)求导和对-f(t)求导tf'(t)求导就是相当于(uv)的导数,其中u为t,v为f'(t)(uv)`=

已知∫(上限x下限0)tf(2x-t)dt=0.5arctanx^2 ,f(1)=1 ,求∫(上限2下限1)f(x)dx

结果得3/4计算过程如下:(1):令2x-t=ut:0->x则u:2x->x且dt=-du∫(上限x下限0)tf(2x-t)dt=∫(上限x下限2x)(u-2x)f(u)dtu=∫(上限x下限0)(u