数域F上的线性空间Mn(F)的维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:03:50
数域F上的线性空间Mn(F)的维数
证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关

零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

设W为数域F上的n维线性空间V的子集合,若W中元素满足

线性空间是定义两种封闭运算的满足八条基本性质的非空集合,W为数域F上的n维线性空间V的子集合,所以W满足八条基本性质.所以只有W的运算封闭,就是线性空间.0+0=0,k0=0再问:谢谢你,你能帮我回答

复数的全体视为实数域上的线性空间

就是加法是复数+复数,乘法是复数*实数线性空间的定义:设V是一个非空集合,F是一个数域.对于V中任意两个元素α,β,在V中总有唯一确定的一个元素γ与它们对应,称为α与β的和,记为γ=α+β.对于数域F

实数域R上全体二阶矩阵构成的线性空间的维数,并写出一组基?

很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不

设V是数域F上n阶上三角阵所成的集合,证明:在矩阵的加法及数乘下V是线性空间

只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这

数域p上n级下三角矩阵关于矩阵加法和数乘构成的线性空间的维数是多少?

那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

问刘老师,所有n阶反对称矩阵构成数域P上的线性空间的维数为______

由于反对称矩阵满足aij=-aji,主对角线上元素全是0所以主对角线以下元素由主对角线以上元素唯一确定所以维数为n-1+n-2+...+2+1=n(n-1)/2.

线性空间的定义,(F;+,k)和(CF:+,k)都是线性空间 这里面的+和k是什么意思呢还有这两条线段r = {(0,1

(0,1,0),(1,0,0),(1,0,0),(0,0,1)都是单位向量,起到指明方向的作用;t是向量的模(长度);(0,1,0)t,这应该是个向量,也是个点(0,t,0);r={(0,1,0)t+

37.设σ是F上n维线性空间V的一个线性变换.证明:1.在F[x]中存在次数≤n2的非零多项式f(x),使f(σ)=0

σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f

求线性空间的维数和易组基

公理化定义给定域F,一个线性空间即(向量空间)是个集合V并规定两个运算:向量加法:V×V→V记作v+w,∃v,w∈V,标量乘法:F×V→V记作av,∃a∈F及v∈V.符合下列公

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

泛函:X是赋范线性空间.a≠0,a∈X,若对X上一切范数为1的有界线性泛函f均有|f(a)|≤c(常数),求证||a||

由哈恩-巴拿赫定理的一个推论可得,推论为X是赋范线性空间,且X≠{0},对任意a∈X,a≠0,存在E上的有界线性泛函f使得||f||=1,f(a)=||a||.此题中对一切范数为1的有界线性泛函f均有

设数域F上向量空间V的向量组{α1 ,α2 ,α3}线性无关,向量β1可由α1 ,α2 ,α

设x·α1+y·α2+z·α3+w(kβ1+β2)=0.由β1可由α1,α2,α3线性表示,可设β1=a·α1+b·α2+c·α3,代入得(x+awk)α1+(y+bwk)α2+(z+cwk)α3+w

设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?

dim(V)=3+2+1=6.对称矩阵主对角线下方的元素完全受控于主对角线上方的元素所以3阶对称矩阵的自由度为3+2+1=6