数域F上的线性空间Mn(F)的维数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:03:50
就是证明他的加法和数量乘法也属于那个空间就可以了
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算
线性空间是定义两种封闭运算的满足八条基本性质的非空集合,W为数域F上的n维线性空间V的子集合,所以W满足八条基本性质.所以只有W的运算封闭,就是线性空间.0+0=0,k0=0再问:谢谢你,你能帮我回答
就是加法是复数+复数,乘法是复数*实数线性空间的定义:设V是一个非空集合,F是一个数域.对于V中任意两个元素α,β,在V中总有唯一确定的一个元素γ与它们对应,称为α与β的和,记为γ=α+β.对于数域F
很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不
只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这
那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
由于反对称矩阵满足aij=-aji,主对角线上元素全是0所以主对角线以下元素由主对角线以上元素唯一确定所以维数为n-1+n-2+...+2+1=n(n-1)/2.
(0,1,0),(1,0,0),(1,0,0),(0,0,1)都是单位向量,起到指明方向的作用;t是向量的模(长度);(0,1,0)t,这应该是个向量,也是个点(0,t,0);r={(0,1,0)t+
σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f
公理化定义给定域F,一个线性空间即(向量空间)是个集合V并规定两个运算:向量加法:V×V→V记作v+w,∃v,w∈V,标量乘法:F×V→V记作av,∃a∈F及v∈V.符合下列公
T(1,x,x^2,x^3)=(T(1),T(x),T(x^2),T(x^3))=(0,0,2,6x)=(1,x,x^2,x^3)KK=0020000600000000
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
由哈恩-巴拿赫定理的一个推论可得,推论为X是赋范线性空间,且X≠{0},对任意a∈X,a≠0,存在E上的有界线性泛函f使得||f||=1,f(a)=||a||.此题中对一切范数为1的有界线性泛函f均有
设x·α1+y·α2+z·α3+w(kβ1+β2)=0.由β1可由α1,α2,α3线性表示,可设β1=a·α1+b·α2+c·α3,代入得(x+awk)α1+(y+bwk)α2+(z+cwk)α3+w
dim(V)=3+2+1=6.对称矩阵主对角线下方的元素完全受控于主对角线上方的元素所以3阶对称矩阵的自由度为3+2+1=6