数列满足a1等于2,a2=1,则a12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:06:25
an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1
an/n-a(n+1)/n+1=2/n(n+1)=2(1/n-1/n+1)………………a1/1-a2/2=2(1/1-1/2)a1-an/n=2(1/1-1/2+1/2-1/3+……+1/(n-1)-
原式=1/2+1/4+1/8+……+1/2^n=1/2*[1-(1/2)^n]/(1-1/2)=1-1/2^n再问:要详细步骤再答:等比求和
(1),a2=1/(2-a),a3=(2-a)/(3-2a),a4=(3-2a)/(4-3a);(2),猜想数列{an}的通项公式an=[(n-1)-(n-2)a]/[n-(n-1)a],(a≥2);
A(n+1)=2An+1A(n+1)+1=2An+2=2(An+1)A1+1=1+1=2数列{An+1}是以2为首项,2为公比的等比数列An+1=2^nAn=2^n-1n=1时,A1=1也满足上式An
1,1/a1+2/a2+3/a3+…+n/an=2n那么1/a1+2/a2+3/a3+…+(n-1)/a(n-1)=2(n-1)两式相减,得:n/an=2n-2(n-1)=2那么an=n/22,Sn=
an/a(n-1)=1×2^(n-1)=2^(n-1)a(n-1)/a(n-2)=2^(n-2)…………a2/a1=2连乘an/a1=2×2²×...×2^(n-1)=2^[1+2+...+
∵An+2SnS(n-1)=0(n≥2)∴Sn-S(n-1)+2SnS(n-1)=0(n≥2)∴S(n-1)=Sn+2SnS(n-1)(n≥2)两边同时除以SnS(n-1),S(n-1)/[SnS(n
令n=1时,a1=1*2*3=6;依题意:a1+2a2+3a3+.+nan=n(n+1)(n+2),a1+2a2+3a3+.+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)两式相减,得
A1=1/2成立,设An=1/[n(n+1)]成立,因为A1+A2+…+An=n^2An所以A1+A2+…+An+A(n+1)=(n+1)^2A(n+1),所以A(n+1)=(n+1)^2A(n+1)
等于2,规律就是6个以后就是反复了.
∵数列{a[n]}满足a[1]+2a[2]+3a[3]+...+na[n]=(n+1)(n+2)∴a[1]+2a[2]+3a[3]+...+na[n]+(n+1)a[n+1]=(n+2)(n+3)将上
a1+a2+a3+...+an=n^2+2n可得:Sn=a1+a2+a3+...+an=n^2+2n当n=1时有:a1=S1=1+2=3当n≥2时有:an=Sn-S(n-1)=n^2+2n-(n-1)
(1)∵{an}是等差数列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).又b3=45,∴a3a5=45,即(2a-1)(4a-3)=45,解得a=2或a=-74(舍去),…(5分)
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
a(n+1)/an=1×2ⁿ=2ⁿan/a(n-1)=2^(n-1)a(n-1)/a(n-2)=2^(n-2)…………a2/a1=2连乘an/a1=2×2²×...×
a2=a1+2a2=1+2a2得a2=-1an=a1+2a2+3a3+...+(n-2)a(n-2)+(n-1)a(n-1)a(n-1)=a1+2a2+3a3+...+(n-2)a(n-2)两式相减:
证明:因为:a1+2a2+3a3+…+nan=n(n+1)(n+2),记:bn=nan,那么:b1+b2+...+bn=n(n+1)(n+2)将n-1带入,得:b1+b2+...+b(n-1)=(n-
1、依题a1=1-a1得出a1=0.5a1+a2=2-a2得出a2=0.75a1+a2+a3=3-a3得出a3=0.8752、设p=n-1显见∑(an-1)=-an∑(ap-1)=-ap∑(an-1)
累乘之后剩下的应该是an/a2=(an/an-1)(an-1/an-2).(a3/a2)=(n/n-1)(n-1/n-2).(3/2)=n/2你累乘的时候不能乘到a2/a1,因为n>1,明白了么?