数列{an}是等差数列 公差为3 an=11 前你项和sn=14,求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:04:30
由题an递推公式为an=a1+(n-1)d把n用4n-3代替有递推公式a(4n-3)=a1+(n-1)*4d则a(4n-3)也是等差数列,公差为4d
若数列{an},{bn}是等差数列,公差分别为d1,d2,则数列{a2n},{an,2bn)是不是等差数列?如果是,公差是多少{a2n}是.a(2n)-a(2(n-1))=2*d1,{an±2bn}是
解题思路:1)利用等差数列的通项公式和前n项和公式即可得出;(2)利用(1)和裂项求和即可得出.解题过程:最终答案:略
设an=a1*q^n-1则lgan-1+lgan+1=lga1*q^n-2+lga1*qn=lga1^2*q2n-22lgan=2lga1*qn-1=lg(a1*qn-1)^2=lga1^2*q2n-
1、公差是-1,不是a-12、a(n+1)-an=2(n+1)+1-2n-1=2,{an}是等差数列3、相邻两项只差n不是常数,所以{an}不是等差数列
本题考查的是数列重组后新数列的性质问题当n=2k时,(相邻两项提公因式后,变成n/2个特殊数列公差为4/3)Sn=b1+b2+...+b2k=A1A2-A2A3+A3A4-A4A5+...+A(2k-
1.设数列{an}的公差是d,则a(n+1)cosA+an*sinA=(an+d)*cosA+an*sinA=1即(cosA+sinA)*an=1-dcosA若cosA+sinA不等于0,则an=(1
1.an=a1+(n-1)d=2+n-1=n+1Sn=(a1+an)*n/2=n(n+3)/22.bn=2^(n+1)bn是以b1=4为首项,2为公比的等比数列,Tn=b1(1-q^n)/(1-q)=
n+1-bn=3an+1+4b-(3an+4b)=3an+1-3an=3d所以是公差为3d的等差数列~
先做个mark,回头再做给你看.----------------------------------------将{an}分拆成{bt}、{ct}数列排列如下:{bt}:a1,a3,a5,a7,a9,
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
(1)因为a4,a5,a8成等比数列,所以a52=a4a8.设数列{an}的公差为d,则(3+3d)2=(3+2d)(3+6d)化简整理得d2+2d=0.∵d≠0,∴d=-2.于是an=a2+(n-2
可求:an-a(n-1)为定值3,所以为等差数列且公差为3.把n=1带入可得a1=5
{lgan}是首项为3公差为2lgan=3+2(n-1)=2n+1an=10^(2n+1)a1=10^3=1000q=10所以an为首项为1000公比为10的等比数列
a1+a2+﹉a9+a10=负6因为数列an是等差数列公差为2且有a2+a4+a6+a8+a10=2故5a6=2,a6=2/5,d=2所以a1=-48/5a10=42/5a1+a2+﹉a9+a10=(
sn=n(a1+an)/2sn=a1+n(n-1)d/2解出a1=-7n=7a3=a1+2d=-1
an=11=a1+(n-1)d=a1+3(n-1)a1=14-3n代入下面sn=14=a1*n+n(n-1)d/2得(3n-4)(n-7)=0所以n=7a3=a7-(7-3)d=11-4*3=-1
an+bn-(an-1+bn-1)=(an-an-1)+(bn-bn-1)=d1+d2,所以{an+bn}是等差数列,公差是d1+d2
an=3+(n-1)da(n+1)=3+nd所以bn=6+(2n-1)d=(6-d)+2dn所以bn是等差数列b1=6-d+2d=6+d所以Sn=(b1+bn)n/2=(12+2dn)n/2=dn&s
1、根据题意,有a1=1,a2=2,a3=a1+d1=1+d1,a4=a2+d2=2+d2,a5=a3+d1=2+2d1a1+a2+a3+a4+a5=S5=16----------------(1)a