数列an的前八项和为sn,且sn=(n 1)(n∈n ),求这个数列的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:14:24
数列an的前八项和为sn,且sn=(n 1)(n∈n ),求这个数列的
已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an

n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).

高中数列 已知数列{an}的首项a1=1 前n项和为Sn 且S(n+1)=2Sn+3n+1

S(n+1)=2Sn+3n+1则S(n+1)-Sn=Sn+3n+1即a(n+1)=Sn+3n+1所以Sn=a(n+1)-3n-1所以S(n-1)=an-3(n-1)-1用上式减下式:Sn-S(n-1)

设数列(an )的前n 项和为S ,且对任意正整数n ,an +Sn =4096 求数列的通项公式

an+Sn=4096a(n+1)+S(n+1)=4096相减a(n+1)-an+a(n+1)=0a(n+1)/an=1/2所以是等比,q=1/2a1=S1所以2a1=4096a1=2048=2^11所

已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设

n=an+1S(n+1)=2Sn+n+5.1Sn=2S(n-1)+n-1+5=2S(n-1)+n+4.2(1)-(2)得S(n+1)-Sn=2[Sn-S(n-1)]+1a(n+1)=2an+1a(n+

已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈正整数,求数列{Sn}的通项公式,并求出S(n+1)>S

当n=1时,a1=-14;当n≥2时,an=Sn-Sn-1=-5an+5an-1+1,所以,又a1-1=-15≠0,所以数列{an-1}是等比数列;(2)由(1)知:,得,从而(nÎN*);

已知数列an的前n项和为Sn,且满足an+2Sn·S(n-1)=0(n≥2),a1=1.5

(1)an+2Sn·S(n-1)=0(n≥2),又an=Sn-S(n-1)所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0

快,已知数列An的前n项和为Sn,且满足An+2Sn*S(n-1)=0,n>=2,a1=1/2.求1,数列1/Sn是等差

(1)∵数列a[n]的前n项和为S[n],且满足a[n]+2S[n]S[n-1]=0,n≥2∴S[n]-S[n-1]+2S[n]S[n-1]=0两边除以S[n]S[n-1],得:1/S[n-1]-1/

已知数列an的前n项和为Sn,且1/S₁+1/S₂+...+1/Sn=n/n+1(n属于N*)

1.n=1时,1/S1=1/(1+1)=1/2S1=2n=2时,1/S1+1/S2=1/2+1/S2=2/31/S2=2/3-1/2=1/6S2=6n=1时,S1=2n≥2时,1/S1+1/S2+..

数列{an}的前n项和为Sn,且Sn=13(an−1)

(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−

设数列{bn}的前n项和为Sn,且bn=2-2s.数列{an}为等差数列,且a5=14,a7=20.

∵bn=2-2Sn,∴b[n-1]=2-S[n-1]则bn-b[n-1]=-2(Sn-S[n-1])=-2bn∴3bn=b[n-1]即bn/b[n-1]=1/3,b1=2-2b1,得b1=2/3{bn

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an

因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2

设数列{an}为正项数列,前n项的和为Sn,且an,Sn,an^2成等差数列,求an通项公式

因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(

设数列an的前n项和为Sn,且S1=2,S<n 1>-Sn=Sn 2=bn求证数列bn是等比数列 求数列an的通项公式

且S1=2,S<n1>-Sn=Sn2=bn这句话的意思没看明白!∵bn=Sn+2∴b(n+1)=S(n+1)+2b(n+1)-bn=S(n+1)-Sn=bn∴b(n+1)=2*bn则b(n+1)/bn

已知数列{an}中的前几项和为Sn且满足a1=0.5,an=-2Sn*S(n-1).证明数列{1/Sn}为等差数列,求S

当n≥2时,可以化为Sn-S(n-1)=-2Sn×S(n-1),两边同除以Sn×S(n-1),得1/Sn-1/S(n-1)=2所以{1/Sn}是以2为首项,2为公差的等差数列即1/Sn=2nSn=1/

已知数列{an}的前n项和为Sn,且S

由Sn=13(an−1)可知Sn−1=13(an−1−1),两式相减可得,an=13(an−an−1),即anan−1=−12,(n≥2)故数列数列{an}为等比数列.公比q=−12. 又a

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程:

数列{an}的前n项和为sn,a1=1,且2an=1+√1+8s(n-1),(n>=2)求通项an

由2an-1=√1+8s(n-1)平方得an^2-an=2S(n-1)所以a(n-1)^2-a(n-1)=2S(n-2)^2两式相减整理得[an+a(n-1)][an-a(n-1)-1]=0因为an>