数列an的前八项和为sn,且sn=(n 1)(n∈n ),求这个数列的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:14:24
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).
S(n+1)=2Sn+3n+1则S(n+1)-Sn=Sn+3n+1即a(n+1)=Sn+3n+1所以Sn=a(n+1)-3n-1所以S(n-1)=an-3(n-1)-1用上式减下式:Sn-S(n-1)
an+Sn=4096a(n+1)+S(n+1)=4096相减a(n+1)-an+a(n+1)=0a(n+1)/an=1/2所以是等比,q=1/2a1=S1所以2a1=4096a1=2048=2^11所
n=an+1S(n+1)=2Sn+n+5.1Sn=2S(n-1)+n-1+5=2S(n-1)+n+4.2(1)-(2)得S(n+1)-Sn=2[Sn-S(n-1)]+1a(n+1)=2an+1a(n+
当n=1时,a1=-14;当n≥2时,an=Sn-Sn-1=-5an+5an-1+1,所以,又a1-1=-15≠0,所以数列{an-1}是等比数列;(2)由(1)知:,得,从而(nÎN*);
(1)an+2Sn·S(n-1)=0(n≥2),又an=Sn-S(n-1)所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0
(1)∵数列a[n]的前n项和为S[n],且满足a[n]+2S[n]S[n-1]=0,n≥2∴S[n]-S[n-1]+2S[n]S[n-1]=0两边除以S[n]S[n-1],得:1/S[n-1]-1/
1.n=1时,1/S1=1/(1+1)=1/2S1=2n=2时,1/S1+1/S2=1/2+1/S2=2/31/S2=2/3-1/2=1/6S2=6n=1时,S1=2n≥2时,1/S1+1/S2+..
(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−
∵bn=2-2Sn,∴b[n-1]=2-S[n-1]则bn-b[n-1]=-2(Sn-S[n-1])=-2bn∴3bn=b[n-1]即bn/b[n-1]=1/3,b1=2-2b1,得b1=2/3{bn
sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1
因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2
因为an,Sn,an^2成等差数列所以2Sn=an^2+an2an=2Sn-2S(n-1)=an^2+an-a(n-1)^2-a(n-1)得:(an-a(n-1))(an+a(n-1))-(an+a(
且S1=2,S<n1>-Sn=Sn2=bn这句话的意思没看明白!∵bn=Sn+2∴b(n+1)=S(n+1)+2b(n+1)-bn=S(n+1)-Sn=bn∴b(n+1)=2*bn则b(n+1)/bn
当n≥2时,可以化为Sn-S(n-1)=-2Sn×S(n-1),两边同除以Sn×S(n-1),得1/Sn-1/S(n-1)=2所以{1/Sn}是以2为首项,2为公差的等差数列即1/Sn=2nSn=1/
由Sn=13(an−1)可知Sn−1=13(an−1−1),两式相减可得,an=13(an−an−1),即anan−1=−12,(n≥2)故数列数列{an}为等比数列.公比q=−12. 又a
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程:
由2an-1=√1+8s(n-1)平方得an^2-an=2S(n-1)所以a(n-1)^2-a(n-1)=2S(n-2)^2两式相减整理得[an+a(n-1)][an-a(n-1)-1]=0因为an>