数列an an=1 1 a 2n-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:51:02
已知f(x)=2x-1,g(x)=-2x,数列{a‹n›}(n∈正整数)的各项都为整数,其前n项和为s‹n›,若点(a‹2n-1›
an*an+1/an-1*an=q→an+1/an-1=q→an+2/an=q→a(2k+1)=a(2k-1)*q;a(2k)=a(2k-2)*qa1=1,a2=r→bn=q^(n-1)+r*q^(n
在原式基础上,再写一相同结构等式,到an+2结束.减去原式便得到:1/(an+1)an=n+1/(an+1)(an+2)-n/anan+1整理得…你题目可能出错了,不是等差数列.我们假设公差为d.那么
如果an不等于0有a(n+1)/an=2-a(n-1)a1=1,有a3=a2=1由数学归纳法可知an=1是常数列再问:不好意思是an+1+a(n+1)an-2an=0a1=1求通项再答:。。。。这个简
anan+1-2an=0anan+1=2anan+1=2所以a2=2a3=2a4=2
lim(a1+a2+a3+.an)=a/(1-q),a2,a4,...是首项为aq,公比为q^2的等比数列,lim(a2+a4+.+a2n)=aq/(1-q^2),lim(a1+a2+a3+.an)/
-3再问:求过程。。。我也算得这个相当于上面a1/(1-(-1/3)^2)再除a1*(-1/3)/(1-(-1/3)^2)等于-3。。。可是选项中没这个。。。再答:就是把下面的每一项都提出来一个-1/
设公差为d[a2+a4+...+a(2n)]-[a1+a3+...+a(2n-1)]=72-90(a2-a1)+(a4-a3)+...+[a(2n)-a(2n-1)]=-18nd=-18d=-18/n
∵数列{a[n]}满足4a[n+1]-a[n]a[n+1]+2a[n]=9∴(4-a[n])a[n+1]=9-2a[n]即:a[n+1]=(2a[n]-9)/(a[n]-4)∵a[1]=1∴a[2]=
1/a(n+1)=an+2/2an=1/2+1/an所以,{1/an}是公差为1/2的等差数列1/an=1/a1+(n-1)*1/2=(n+1)/2an=2/(n+1)a(n+1)=2/(n+3)an
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
(1)∵a1=1,a2=2,a3=a2-1,a4=2a3=2,∴猜测a2006=2.(2)由a2n=qa2n-1,a2n+1=a2n+d(q∈R,d∈R,q≠0)得a2n+1=qa2n-1+d,当d=
an*a(n+1)=2^na(n-1)*an=2^(n-1)所以:a(n+1)/a(n-1)=2a1=1,所以a2=2(此时分奇数和偶数讨论)a(2n+1)=2^n,a(2n)=2^n所以a9=2^4
要求什么?是Bn吗?A1×A2=2×3=6AnA(n+1)=6×3^(n-1)=2×3^n由此推出A(n-1)An=2×3^(n-1)两式相除A(n+1)/A(n-1)=3数列{An}奇数项、偶数项分
(an*an+1)/(an-1*an)=3=>an+1/an-1=3=>a2n=3^n,a2n-1=2*3^(n-1)=>bn=5*3^(n-1)
你可以这么理解a2+a4+.+a2n叫做前2n项中偶数项的和而S2n=a1+a2+a3+.+a2n叫前2n项的和
由(an-1-an)/(anan-1)=(an-an+1)/(anan+1)(n≥2),得到1/an-1/a(n-1)=1/a(n+1)-1/an{1/an}是等差数列,而且公差d=1/a2-1/a1
由a1=1,a1,a3,a2为d=3的数列,有a3=4,a2=7再由a3,a5,a4等差,有a5=7a4=10.a(2n)是d=3的等差数列,a(2n-1)也是d=3的等差数列,数列为:1,7,4,1
由题意:n=1时,a2*a1=a2*1=2,即a2=2n=2时,a2*a3=4,即a3=2当n>=2时,anan+1=2^nan-1an=2^(n-1)故an+1/an-1=2所以隔项成等比数列当n为
(1)∵anan+1=2n,∴anan-1=2n-1,两式相比:an+1an−1=2,∴数列{an}的奇数项成等比数列,偶数项成等比数列,∵a1=1,a nan+1=2n(n∈N*)∴a1=