数列1 2 3 ... n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:05:44
1,等差数列求和s=(a1+an)/2a1=4an=2*2nsn=2n+22,如果想问2*2^n吧,这是等比数列等比数列求和s=a1(1-q^n)/(1-q)a1是首个数q是等比此题a1=4,q=2
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
楼主,我用白话给你解释下极限定义你就懂了:对于数列极限:数学表达:若对于任意的ε>0都存在一个正整数N,使得当n>N时,|an-A|∞)an=A白话表达:若足项后数列所有项与A的距离可以任意小则称该数
解题思路:第一问转化为等比数列(不包括第一项),第二问用错位相减解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prce
解题思路:数列前n项和解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.
n方和负n分组求和
方法非常多,我知道的就不下10种,下面提供简单的几种一是利用归纳法,这个具体过程略.二是利用立方差公式:n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]=n^2+(n-1)^2+n
An=(2n+1)^2/[2n(n+1)]An=(4n^2+4n+1)/2n(n+1)=2+1/2n(n+1)=2+1/2(1/n-1/n+1)Tn=2n+1/2(1-1/n+1)Tn=2n+n/(2
S(n)=(n-1)×2^(n+1)+2解法一:S(n)=2^1+2×2^2+3×2^3+…+n×2^n=n×(2^1+2^2+2^3+…+2^n)-[2^1+2^2+2^3+…+2^(n-1)]-[
lim[(n-1)/(n+1)]^n=lim[(n+1-2)/(n+1)]^n=lim[1+(-2)/(n+1)]^n=lim[1+(-2)/(n+1)]^(n+1-1)=lim[1+(-2)/(n+
把这个式子n*(n+1)里的n乘进去,得到n^2+n,再利用平方和公式1^2+2^2+3^2+4^2+……+n^2=n(n+1)(2n+1)×1/6,1+2+3+4+……+n=n(n+1)/2,最后结
n=1时,数列=-1n=2时,数列=1/2即Sn=-1+1/2-1/3+1/4.利用1-1/2+1/3-1/4+1/5-1/6+……=ln2那么1/2-1/3+1/4-1/5+1/6-1/7+……=1
可以用归纳法比较容易首先,n=1比较容易证明然后假设n时成立求n+1时的式子,代入得到
你说的是n趋于正无穷吗?如果是的话应该这样做:我用word发到你邮箱,把你的邮箱给我
全部展开,A(n)=an^4+bn^3+cn^2+dn+6然后分4个数列求和,前面系数提出来就是单阶的求和了,都有公式吧
(一)当n为偶数时,Tn=-1^2+2^2-3^2+4^2.-(n-1)^2+n^2=3+7+11+.+2n-1=0.5*(3+2n-1)*(n/2)=0.5*n*(n+1)(二)当n为奇数时,Tn=
n!/n^n>0n!/n^n≤[(1/n+2/n+...+n/n)/n]^n=(1+1/n)^n/2^n上式用了均值不等式.显然能用挤夹原理证明这个极限为0.对n≥3时,n!/n^n
解题思路:前n项和,错位相减解决问题解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include
n=31*1+2=33*3+2=1111*11+2=123
Sn=1/2^2+2/2^3+3/2^4+4/2^5+……+(n-1)/2^n+n/2^(n+1)2Sn=1/2+2/2^2+3/2^3+4/2^4+……+(n-1)/2^(n-1)+n/2^n两式相