C,D是以AB 为直径的半圆上的三等份点,圆半径为R,则阴影
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:26:30
设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)
如图 解题思路:连接OD和DB.先求出以AB为直径的圆的半径为2(周长是2/3 π×3×2=4 π,4 π÷2 π=2)由∠DOB=60°,OD=OB
∵CH⊥AB,DB⊥AB∴CH‖BD∵E是CH中点∴F是BD中点即F为RT△BCD斜边上的中点,那么∠CBF=∠FCB因为∠CBF=∠BAC=ACO∴∠GCO=ACB=90°.即CG是⊙O的切线过F做
证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵
连接OC、OD、CD.∵△COD和△CPD等底等高,∴S△COD=S△POD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD=60π×36360=6π.
如图,连接OC、OD、BD.∵C、D是以AB为直径的半圆上的三等分点,∴∠BOD=∠COD=60°.CD=BD.又∵OC=OD,∴△OCD是等边三角形,∴∠CDO=60°∴∠CDO=∠BOD,∴CD∥
再问:为什么S△PCD=S△PBO?再答:
连接AD,则∠ADB=90°,不难证明△CDP∽△APB,(因为∠A=∠D,∠C=∠B)所以CD:AB=PD:PA=cosa
∵C,D是以AB为直径的半圆上的三等分点,∴∠COD=60°,∵△ACD的面积等于△OCD的面积,∴都加上CD之间弓形的面积得出S阴影=S扇形OCD,∴60π×R2360=πR26(提示:连接CO,D
⑴连结OD交BC于G∵D是弧BC的中点∴OD⊥BC∴∠CGD=90°∵AB是直径∴∠ADB=90°=∠E∴∠EDG=360°-∠E-∠ECG-∠CGD=90°∴OD⊥EF∴EF是半圆的切线⑵设⊙O的半
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
你能把图给我吗?是初三的吧再问:,。。。再答:我知道了我做的和下边那位的一样很麻烦的如果你是初三的那就这样做吧连接AD,OC交与E点,则角AEC=90度=∠CED可得方程组AE²+CE&su
4+4FG+FG^2=2BG^2=2(FG^2-BF^2),BF=24+4FG+FG^2=2FG2-8,FG^2-4FG-12=0.
(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠
我只能猜测你的题意:PCD连成三角形,然后你求的是三角形外半圆内的阴影部分面积.解答如下:连接CODO因为点CD为半圆的三等分点,所以∠COD=180°/3=60°OC=OD=1/2*AB=5CM所以
AB中点OAO=ROC=R三等分点角AOC=60°,三角形AOC是等边三角形A到CD的垂线为2分之1倍根号3CD=R面积为4分之根号3倍R