C 用泰勒公式求sin(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:56:21
limx→0(sinx/x)∧(1/(x∧2))=e^[limx→0[ln(sinx/x)]/(x²))]=e^[limx→0[ln(1+sinx/x-1)]/(x²))]=e^[
不需要用taylor公式,那是求导次数多时的近似求解直接一次:cosx二次:-sinx三次:-cosx带入:1
问题出在变量c的数据类型上,这是因为,当x的值比较大的时候,x^n除以n!收敛到0的速度非常慢,只有当n的值非常大的时候才能使得两者的商小于你给的精度,所以在这一过程中c=n!会超出int型数据表示的
问题1:第二个for语句处改成2*n-1问题2:第一个for语句里的n+=2,改成n++问题3:a的值反转,从第二个for语句里拿出来,放到t=a*y/j之后.问题4:y在t=a*y/j这一行用过之后
sin(sinx)=x-2x^3/3!+o(x^5)
第十八行改为:\x09\x0918:for(n=1,h=1;n再问:对!这是一个问题,先谢过。不过我照这样改了之后,还是有问题,输入3,正确应是0.4几,我的输出确实-0.3几,愁死了再答:经过调试,
泰勒公式(Taylor'sformula)f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn(x)其中Rn(x)=f
√(1+x)=1+1/2x-1/8x^2+1/16x^3-...,√(1+x^2)=1+1/2x^2-1/8x^4+1/16x^6-...cosx=1-x^2/2!+x^4/4!-...e^x=1+x
你好,第一:首先将㏑(1+X)用麦克劳林公式(泰勒公式的推广)分解开就是X-(X)²/2+(X)³/3-(X)∧4+o(∧4X),第二:将㏑(1+X)中的X换为sinX就ok了,很
#include <stdio.h>#include <math.h>int jiecheng(int n){\x09int
//把b定义为浮点型.inti=1,b=1;floatx,a,c;doubles=0;//上面两行改为inti=1;floatx,a,c,b=1.0;doubles=0;再问:我试过之后还是不行mai
(arctan(x))'=1/(1+x^2)这个导数可以用基本公式1/(1+x)来展开
首先你要明确泰勒展开在不同的前提设定下可以有不同的展开.就这个函数来说,对sinX可以先展开=sin(sinx)=sinx-(1/3!)(sinx)^3+(1/5!)(sinx)^5-(1/7!)(s
因为分母是x^2,所以只展开到2阶导数就够了,到三阶式子肯定含有x^3,由于x趋于0,所以x^3是x^2的高阶无穷小.也就是分母是几次方,一般就展到几阶.书后边写了几个常见的泰勒展开式,e^x的展开也
再问:那个答案是1/6再问:求解'~再答:分子是1/24-1/8.刚才把算成+了再问:原来算错了,好马虎呦~再问:再问:那个,大神帮帮我再问:第二大题的第二小题^_^
据我所知,似的
(1+x)^n=C(n,0)+C(n,1)x+C(n,2)x^2+.+C(n,r)x^r+.+C(n,n-1)x^(n-1)+C(n,n)x^n再问:书上答案是这样的:我没弄明白是怎么得到的