抛物线的焦点F在x轴上,直线y=-3与抛物线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:26:00
抛物线的焦点F在x轴上,直线y=-3与抛物线
已知抛物线C的焦点在y轴上,且抛物线上的点P(X0,3)到焦点F的距离为4,斜率为2的直线y与抛物线C交于A,B两点

1.设x²=2py,(p>0)P(X0,3)到焦点F(0,p/2的距离为4∴xo²=6p∴6p+(3-p/2)²=4²∴p=-14(舍),p=2抛物线C的标准方

已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,

由题意知,抛物线为焦点在x轴上的抛物线.(1)∴设y^2=2px(p>0)焦点坐标(p/2,0)∵抛物线上的一点到焦点的距离等于这点到抛物线准线的距离(准线:x=-p/2)∴√[(2-p/2)^2+m

1、抛物线y^2=2px(p>0)的焦点F,过F点直线交抛物线于AB两点,点C在准线上,且BC||x轴,证明AC过原点O

第一题解题思路如下.设A,B两点的坐标(x1,y1),(x2,y2)在设过F的直线方程为x=my+p/2(p>0)---(1)抛物线方程y^2=2px--(2),联立(1)(2),消去x或者y写出关于

设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分

y=x^2==>p=1/2设:A(x1,x1^2),B(x2,x2^2)根据抛物线的切线公式得:AP的方程是:2x1x-y-x1^2=0----------------------------(1)B

设抛物线C:Y=X?的焦点为F,动点P在直线L:X-Y-2=0上运动,过P作抛物线c的两条切线PA,PB,且与抛物线C分

三角形APB的重心G的轨迹方程是:y=1/3(4x^2-x+2)这里打不下,看这个回答就可以

已知抛物线y^2=4x的焦点为F,过点(-1,0)的直线交抛物线与A,B,A关于x轴对称点为D,求证F在直线BD上

F(1,0),设直线为y=k(x+1),与抛物线方程联立,整理得k^2x^2+(2k^2+4)+k^2=0,设A(x1,y1)B(x2,y2)D为(x1,-y1)x1+x2=-(2k^2+4)/k^2

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

已知抛物线的焦点在直线l:x-2y-4=0上,求抛物线的标准方程.

令x=0得y=-2;令y=0得x=4;∴抛物线的焦点坐标为:(4,0),(0,-2)--------------------------------------------------(4分)当焦点为

已知抛物线的焦点在直线3x-y+36=0上,则抛物线的准线方程是

直线与x轴Y轴分别交于(-12,0),(0,36)设焦点在X轴时方程为Y^2=2PX(P>0)因为-P/2=-12所以P=24所以所求抛物线方程为Y^2=-48X同理,得焦点在Y轴是所求抛物线方程为X

如果抛物线的顶点坐标原点,对称轴为y轴,焦点在直线x-2y+4=0上,那么抛物线的方程是?

x^2=-8y对称轴是y轴,焦点在直线x-2y+4=0上,则将x=0代入得:0-2y+4=0y=2所以焦点为(0,2)所以p/2=2p=42p=8,抛物线开口向下.所以它的方程是x^2=-8y

已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y+12=0上,求抛物线的通径长

对称轴是x轴则顶点在焦点在x轴4x+4y-12=0所以F(3,0)则p/2=32p=12y²=12x❤您的问题已经被解答~(>^ω^

抛物线的顶点在原点,对称轴为y轴,焦点在直线y-2x+2=0上,那么抛物线的方程为?

对称轴为y轴所以焦点也在y轴y-2x+2=0和y轴交点x=0,y=-2所以焦点是F(0,-2)他和顶点距离是p/2=|-2|=22p=8F在原点下方则开口向下所以是x²=-2py即x

若抛物线的顶点在原点,对称轴为y轴,焦点在直线3x-4y-12=0上则此抛物线方程是?

由题意得焦点在y轴上,即x=0,所以y=4所以焦点为(0,4)所以p=8,所以是x²=16y

顶点为原点O,焦点在X轴上的抛物线,其内接△ABC的重心是焦点F,若直线BC方程为4x+y-20=0.

(I)设抛物线S的方程为y2=2px,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合直线l与抛物线相交于两个不同的点得到根的判别式大于0,结合根与系数的关系利用重心公式即可求得p

设抛物线y平方=2px(p>0)的焦点为F,经过点F的直线交抛物线与A.B两点,点C在抛物线的准线上,且BC平行x轴,证

设A(x1,y1),B(x2,y2),则C(-p/2,y2)设直线AB:x=ky+p/2,代入y^2=2px得y^2-2pky-p^2=0所以y1y2=-p^2,y2=-p^2/y1OA的斜率为k1=

已知抛物线的顶点在原点,对称轴为X轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是16

直线3x-4y-12=0当y=0时x=4直线与x轴交点为(4,0)由已知抛物线的顶点在原点,对称轴为X轴,焦点为(4,0)即P/2=4,P=8所以抛物线方程为y2=16x抛物线通就是过抛物线焦点且垂直

顶点在原点,焦点在x轴上的抛物线截直线y=2x-4,所得弦长|AB|=3根号5,求抛物线方程

有给出抛物线的形式可设抛物线方程y²=2px(p≠0)设A(x1,y1),B(x2,y2)与直线相交则两方程联立消去y,则2x²-(8+p)x+8=0所以x1+x2=(8+p)/2

顶点在原点,焦点在X轴上的抛物线被直线y=-2x-1所得弦长AB等于5根号3,求抛物线方程?

/>焦点(-p/2,0),设抛物线方程为:y^2=-2px(p>0)将直线代入(-2x-1)^2=4x^2+4x+1=-2px4x^2+(4+2p)x+1=0x1+x2=-(4+2p)/4,x1x2=

以原点为顶点,x轴为对称轴的抛物线的焦点在直线4x-3y+11=0上,则此抛物线的方程是

设焦点坐标为(m,0),则4m+11=0m=-11/4,所以抛物线开口朝左,标准方程为y^2=-11x

已知抛物线y²=2px的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线交与A,B两点,

解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4