抛物线求导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:20:48
解题思路:利用轨迹方程的知识求解。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/
3xfx再问:再问:我这样对吗?再答:嗯再问:你好厉害
教你一种简单快速的方法:1.求出这点到焦点的距离(可以用两点间距离公式,也可利用到准线的距离间接求得,总之第一步的计算量可以忽略)2.在抛物线的对称轴上找一点,使得这点到焦点的距离与第1步求得的距离相
抛物线求导后的斜率和切线的斜率是一样的;对抛物线方程求导,把交点的横坐标带入导数方程,解得的结果就是切线的斜率!再问:要的就是这句话!
解题思路:先化简u(x),再求导..................................注意常数项导数为0解题过程:最终答案:略
求导没学,那就原始一点用点斜式设切线方程为y-4=k(x-2)整理得y=kx-2k+4因为是切线,所以只一个交点联立y^2=8xy=kx-2k+4(消X方便)y^2-8y/k+32/k-16=0Δ=6
D[Integrate[((λw+(1-λ)(p-c)-r)(a+ke+lr+x))f[x],{x,A,B}],r]结果是Integrate[(-(a+ek+lr+x)f[x]+(-r+(-c+p)(
以这个为例,大体思路都是这样的
解题思路:构造函数,通过求导数,判断出函数的单调性,进一步求出函数的最值,从而求出b的取值范围.解题过程:
详细解答见图片(稍等)点击放大,再点击再放大.
y'=2xk=y'|(x=3)=6点斜式y-9=6(x-3)y=6x-9再问:y'除以(x-3)?再答:不是y'=2x将x=3代入求出y'=6k=y'=6斜率为6这是一种表示方法再问:y=6x-9k是
解题思路:应用导数的运算法则解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
设抛物线上的切点是(a,b)∵直线y=2x-2与抛物线x^2=2py相切==>(a^2/(2p))'=2,a^2=2pb==>a/p=2,b=a^2/(2p)==>a=2p,b=2p∴抛物线上切点的坐
1.y=c(c为常数)y'=02.y=x^ny'=nx^(n-1)3.y=a^xy'=a^xlnay=e^xy'=e^x4.y=logaxy'=logae/xy=lnxy'=1/x5.y=sinxy'
解题思路:抛物线的应用如有疑问与我讨论解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ
解题思路:【解析】(1)由,利用导数的几何意义能求出实数a的值.(2))由已知得=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1-b<0有解,由此能求出实数b的取值范围.(3)由=,
使用复合函数的求导公式y^2是y的函数,而y又是x的函数,所以(y^2)'=2y*y'所以(y^2)'=2y*y'=(4x)'=4所以y'=2/y所以对于任意一点(x0,y0)的切线的斜率为2/y0
解题思路:(1)把P,A坐标代入抛物线解析式即可.(2)先设出平移后的直线l的解析式,然后根据(1)的抛物线的解析式求出C点的坐标,然后将C点的坐标代入直线l中即可得出直线l的解析式.解题过程:最终答
解题思路:抛物线解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php