抛物线Y=-1 2x 3 2x 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:12:41
抛物线Y=-1 2x 3 2x 2
已知:抛物线y=-3x2+12x-8.

(1)y=-3x2+12x-8=-3(x2-4x)-8=-3(x-2)2+12-8=-3(x-2)2+4,函数y=-3x2+12x-8的对称轴为x=2,顶点坐标为(2,4).(不用配方法不给分)(2分

已知抛物线y=12x2+x+c与x轴没有交点.

(1)∵抛物线y=12x2+x+c与x轴没有交点.∴△=1-4×12c=1-2c<0,解得c>12;(2)∵c>12,∴直线过一、三象限,∵b=1>0,∴直线与y轴的交点在y轴的正半轴,∴直线y=cx

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

求经过抛物线y=12x

∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式

求抛物线焦点坐标求抛物线y=-2x∧2的焦点坐标 2,求抛物线y2=-2x的焦点坐标 3.求抛物线y∧2=12x的准线方

x²=-y/2=-2py,p=1/4,开口向下,焦点(0,-1/8)左右上y²=-2x=-2px,p=1,开口向左,焦点(-1/2,0)y²=12x=2px,p=6,开口

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

抛物线y=2X²的对称轴是什么.

y=2x^2,可以看成y=2(x-0)^2+0,其顶点坐标是(0,0),所以对称轴为y轴.另外发并点击我的头像向我求助,请谅解,,你的采纳是我服务的动力.

24.(12分)如图,直线y= 1 2x与抛物线y=ax2+b(a≠0)交于点A(-4,-2)和B(6,3),抛物线与y

1)由A、B坐标代入抛物线解析式中,得a=1/4,b=-6.则抛物线y=1/4x^2-6;2)因为△MAB是以AB为底边的等腰三角形,有AM=BM,设M(x,y),根据两点之间的距离公式,联立方程式.

已知抛物线y=ax+bx+c经过A(0,3)B(3,0)C(4,3) ①求抛物线解析式 ②求抛物线

分析:(1)把点A、B、C代入抛物线解析式y=ax^2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据

抛物线y=12

抛物线y=12(x-3)2的顶点坐标为(3,0).故答案为:(3,0).

已知抛物线y=−x2−2x+a2−12.

(1)∵y=−x2−2x+a2−12=−(x2+2x)+a2−12=−(x+1)2+a2+12∴抛物线的顶点坐标为(−1,a2+12),在第二象限;(2)∵抛物线经过原点,所以a2−12=0,所以a=

抛物线y2=4y的准线方程x=?

y2=4y错了吧应该是y²=4x或者x²=4y右开口抛物线:y^2=2px,焦点是(p/2,0),准线l的方程是x=—p/2x=—1上开口抛物线x^2=2py中,焦点是(0,p/2

已知⊙P的半径为1,圆心P在抛物线y=12x

当y=1时,有1=12x2-1,x2=4,∴x=±2.即点P(2,1)或(-2,1).当y=-1时,有-1=12x2-1,x=0.即点P(0,-1).故答案是:(2,1)或(-2,1)或(0,-1).

抛物线y=-12

∵抛物线y=-12(x+1)2-1,∴抛物线y=-12(x+1)2-1的顶点坐标为:(-1,-1).故答案为:(-1,-1).

将抛物线y=2x2-12x+16绕顶点旋转180度,所得抛物线解析式是

整理y=2(x2-6x+8)y=2(x2-6x+9-1)y=2(x-3)方-2所以顶点坐标为(3,-2)绕顶点旋转180,只是开口方向发生了改变即y=-2(x-3)方-2展开即可

(1)将抛物线y=2x平方-12X+16让顶点转180度.所得抛物线解析式

让顶点转180度,就是整个抛物线转180度,抛物线解析式为y=-2x平方+12x-16

P是抛物线y=x2上的点,若过点P的切线方程与直线y=−12x+1

∵过点P的切线方程与直线y=−12x+1垂直∴过点P的切线的斜率为2又∵抛物线方程为y=x2,则y'=2x,令y'=2x=2,则x=1,将x=1代入抛物线方程y=x2,得y=1则P点坐标为(1,1)则

抛物线的性质求焦点在直线3x-4y-12=0上的抛物线的标准方程,并求出抛物线相应的准线方程.

面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点.定直线l叫做抛物线的准线.新授内容一,抛物线的范围:y2=2pxy取全体实数XYX0二,抛物线的对称性y2=2px

把抛物线y=x²向右平移3个单位后得到抛物线的函数关系式

y=x²向右平移3个单位后得到抛物线的函数关系式y=(x-3)^2y=x^2-6x+9

已知抛物线y=x²-2x-3

将y=x+b代入y=x²-2x+3有x²-3x+(3-b)=0x=(3±√(21-4b))/2,21-4b≥0①因为-1再问:不会解啊,最后b的取值范围是_____啊……再答:so