抛物线y的平方等于2px上一点m到焦点f的距离mf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:43:39
y=x²+2px+10=x²+2px+p²-p²+10=(x+p)²-p²+10所以,此抛物线的顶点是(-p,-p²+10)由于顶
正三角形边长为x,则面积=x^2*sqrt(3)/4=4sqrt(3)x^2=16x=4高为2sqrt(3)当x=2sqrt(3),y=sqrt(4sqrt(3)p)=2p=1/sqrt(3)y^2=
焦点F(0.5p,0)抛物线:y^2=2px上任意一点M,MF中点P(x,y)xM+xF=2xP,xM=2xP-xF=2x-0.5pyM+yF=2yP,yM=2yP-yF=2y(yM)^2=2p(xM
设,点A坐标为(t1^2/2p,t1),点B坐标为(t2^2/2p,t2),抛物线y^2=2px,则焦点坐标为(P/2,0).令,直线AB的方程为Y=K(X-P/2),X=(Y+PK/2)/K=(2Y
可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为
准线x=-p/2所以|4-(-p/2)|=5p=2y²=4x所以F(1,0)M(4,4)
点M(1,m)(m>0)到焦点距离为5,即点M到准线的距离也是等于5,即有:1+P/2=5,得到P=8那么m^2=2*8=16,m>0,m=4即M(1,4)双曲线是x^2/a^2-y^2=1.c^2=
因为抛物线的定义就是到一定点距离和到一条定直线距离相等的点的集合.所以到准线的距离为a.那个你的a应该>p/2,因为抛物线上到焦点的距离最小是p/2.那么这道题m的坐标应该是(a-p/2,+-根号[2
因抛物线上一点到F及到准线的距离相等,因MF=2p,准线X=-p/2,故M的横坐标为2p-p/2=3/2p,代入抛物线Y^2=2px,得y=±√3p即M的坐标(3/2p,√3p)及(3/2p,-√3p
正三角形的一个顶点是O(0,0),另外的一个顶点是A(x,y).(x0)由于正三角形和抛物线y^2=2px都是轴对称图形,点O在对称轴x轴上另外的(在抛物线上的)两点也就应该关于x轴对称.所以有第三个
焦点:(p/2,0)准线方程L:x=-p/2设正三角形的边长为a,则另外两个点的坐标为((根号3)/2*a,1/2*a),((根号3)/2*a,-1/2*a)根据抛物线上一点到焦点距离等于到准线L距离
抛物线y^2=2px的为x=-p/2,设M横坐标为x∵M在抛物线上,∴M到焦点的距离等于M到的距离即x+p/2=2p则x=3p/2则y^2=2p×3p/2=3p^2,即y=±p√3∴M坐标为(3p/2
抛物线y平方=2px(p>0),准线是x=-p/2.根据定义,点A(1,a)到它的焦点F的距离=点A到准线的距离=2,即:1-(-p/2)=2p=2故方程是y^2=4x.A坐标是(1,2)
利用第二定义有4+p/2=5即p=2所以E:y^2=4x设M(x1,y1)N(x2,y2)且x1
抛物线参数方程为y=t,x=t^2/2p设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)所以求得AC的直线方程为y-t2=(t2-t1)(x-t2^2/2p)/(
若M到抛物线焦点的距离为6,则4+p/2=6p=4抛物线的方程为y²=2px=8x注:抛物线上点M﹙a,b﹚到抛物线焦点的距离为h=a+p/2此公式可由抛物线的定义推出﹙也就是到焦点距离等于
按抛物线的定义,P与准线的距离等于与焦点F(p/2,0)的距离,PO=PF, 即P为以OF为底的等腰三角形的顶点,P到OF的垂线平方OF,所以OF=P的横坐标的2倍,即p/2=1,p=2y&
因为抛物线y²=2px的焦点坐标为(1,0)故高抛物线的准线方程为x=-1再答:原抛物线方程为y²=4x.再问:c(H+)
y^2=2px焦点为F(p/2,0),准线为:x=-p/2P为抛物线上的一动点,过P作PQ//x轴交准线于Q则:PF=PQ所以,PA+PF=PA+PQ≥AQ所以,A、P、Q同一直线时,PA+PF的值最
/>抛物线y^2=2px∴准线是x=-p/2利用抛物线定义M(1,a)到焦点的距离=M到准线的距离∴M到x=-p/2的距离是3∴1+p/2=3∴p=4∴抛物线方程是y²=8x∵M(1,a)在