抛物线y²=2x把圆x² y²=8分成两个部分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:43:15
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式
y=-(x+1)^2+p+1所以顶点坐标(-1,p+1)代入直线中即可解出p=2.5y=-(x+1)^2+3.5
∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有
1. 相切联立方程 y=x^2-2x y=x+bx^2-3x-b=0 有唯一
由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0
将y=x+2与Y=X平方+2X联列方程组并消去y得x^2+2x=x+2,移项得x^2+x-2=0,用求根公式或用十字相乘法得x=-2或x=1,所以交点坐标为(-2,0)(1,0)
设他们的交点为A,则点A的X与Y的关系既满足直线方程又满足抛物线方程.抛物线有个顶点公式设抛物线为aX平方+bX+c=Y顶点的横坐标值为-b/2a,纵坐标值为(4ac-b平方)/4a故A(-1,(-4
将抛物线配方成:Y=(X-1)²当X=1时,函数值最小,为0因此顶点坐标为(1,0)
解题思路:*题考查了二次函数的配方和图像的相关知识点。解题过程:
解题思路:y=3(x²+2x/3)=3(x²+2x/3+1/9-1/9)=3(x²+2x/3+1/9)-1/3=3(x+1/3)²-1/3解题过程:y=3(x²+2x/3)=3(x²+2x/3+1/9
配方,y=x²+2x+1=(x+1)²,顶点为(-1,0),y=x²-3的顶点是(0,-3)所以将抛物线y=x²+2x+1先向右平移1个单位,再向下平移3个单位
∵y=-x²+2x+2=-(x-1)²+3∴抛物线的开口向下,对称轴是直线X=1在对称轴的右侧,Y随X的增大而减小.由x1>x2>1,可知点A,B都在对称轴的右侧,则y1
1、y=x²-2x-3 =(x-3)(x+1)当y=0时,x=3或x=-1当x=0时,y=-3所以a、b坐标为(-1,0)和(3,0)c坐标(0,-3)2、S△abc=(1/2)*
把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致
x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方
∵y=3x²-2x=3(x²-2x/3)=3(x²-2x/3+1/9-1/9)=3(x-1/3)²-1/3∴抛物线y=3x²-2x可由抛物线y=3x&