抛物线y=ax平方 bx c与x轴交于点A(1,0).B(3,0)两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:16:15
解题思路:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>
关于X轴对称即图像除了开口方向相反其它的都一样,所以a为2的相反数,a=-2
由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7
(1)对称轴是直线x=1,点A的坐标是(3,0).(2)①如图1,连接AC、AD、CD,过点D作DM⊥y轴于M.方法一:∵A(3,0),C(0,-b),D(1,-a-b).∴OA=3,OC=b,MC=
选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴
1、 f(x)=(x+2)^2/2-2A(-4,0) P(-2-,2)2、 连接OC,OP∵P(-2-,2)∴∠OPA=45° &nbs
抛物线与轴交点为(-1,0)(3,0)则可设抛物线y=a(x+1)(x-3)抛物线y=a(x+1)(x-3)抛物线y=-2x²的形状相同则a=-2所以y=-2(x+1)(x+3)即y=-2x
(1)依题意知x²+2x-3=0的两根分别为x1=﹣3、x2=1,即B(﹣3,0)、C(1,0),那么抛物线交点式为y=a(x-1)(x+3)=ax²+2ax-3a,即有b=2a,
根据题意知道-b/2a=-1抛物线的形状与y=x平方+5相同知道a=1所以b=2抛物线与x轴的2个交点间距离为3知道y=x^2+2x+c=0的2解差为3,解解吧,很容易得到c=-5/4答案是y=x^2
(x1-x2)²=16(x1+x2)²-4x1x2=16a²+8a²=16a²=16/9a=±4/3
-_-第一个A(-4,0)代入方程有16a-8a+b=0-->8a+b=0OC(0,y0)OB(x0,0)则有y0=2|x0|代入方程有b=y0=2|x0|ax0*ax0+2ax0+b=0三个方程ax
(-1,0),(3,0)是抛物线与x轴的交点,(-1,0)与(3,0)所连线段的中点是(1,0),对称轴经过点(1,0),对称轴方程为x=1.
1.∵y=ax²+2x的对称轴是直线x=3,∴-2/2a=3a=-1/3∴y=-1/3x²+2x当x=3时y=-1/3*3²+2*3=3∴A(3,3)2.令对称轴与x轴交
函数y=x^2-|x|-12的图象与x轴交于A、B两点,另一抛物线y=ax^2+bx+,所以A点为(4,0)B点为(-4,0)(或者A点为(-4,0),B点为(4
①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1
由题意,抛物线经过A(-1,0)(3,0)(0,-3).所以其解析式可设为y=a(x+1)(x-3).把x=0,y=-3代入,得a=1..所以y=(x+1)(x-3)=x²-2x-3..其顶
1、对称轴一定是两个零点的中点坐标值x=(-1+3)/2=12、需要过程可以有另一种解法因为y=ax^2+bx+c与x轴的公共点是(-1,0)(3,0)所以原函数可以写成y=(x+1)(x-3)=x^
xx2,写成集合形式!
顶点在X轴上,即最大或最小值为0,所以是一个完全平方,可见a=正负6
当a=-1时,y=-x²+x+2=-(x-1/2)²+9/4∴顶点坐标(1/2,9/4),对称轴:直线x=1/2再问:下一问啊那是关键再答:下一问题目不完整。再问:当a=a1a=a