抛物线y=ax² bx c 二分之五

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 23:30:10
抛物线y=ax² bx c 二分之五
已知二次函数y=二分之一x的平方+x-二分之五,①求它的图象的顶点坐标及对称轴;②若抛物线与x轴的

y=x^2/2+x-5/2=1/2*(x+1)^2-3,①求它的图象的顶点坐标及对称轴;顶点(-1,-3),对称轴为x=-1②若抛物线与x轴的两个交点为a、b,求线段ab的长.|ab|=√(a+b)^

3X+4Y=5 -7Y+9Y= 负二分之五怎么算要过程

-7Y+9Y=负二分之五2Y=-5/24Y=-53X-5=53X=10X=10/3

已知二次函数y=二分之一x的平方+x-二分之五,

/>①∵y=½x²+x-(5/2)=½(x+1)²-3∴此二次函数的顶点坐标是(-1,-3),对称轴是直线X=-1.②令y=0,得½x²+x

已知抛物线y=-二分之一x^(2)+3x-二分之五的顶点为A,与x轴

y=-x^2/2+3x-5/2顶点坐标为(-b/2a,(4ac-b²)/4a)即A(3,2)-x^2/2+3x-5/2=0解得x1=1,x2=5即B(1,0)C(5,0)点D(0,-5/2)

求抛物线y=二分之一x平方加三x减二分之五的对称轴和顶点坐标?

利用配方法即可求解.y=二分之一x平方加三x减二分之五=1/2(x^2-6x)-5/2=1/2(x-3)^2-9/2-5/2=1/2(x-3)^2-7所以,顶点坐标为(3,-7)说明:1/2——表示:

解方程组{二分之X减三分之Y=六分之五 二分之X减Y=二分之三

二分之X减三分之Y=六分之五两边乘63X-2Y=5(1)二分之X减Y=二分之三两边乘2X-2Y=3(2)(1)-(2)2X=2所以X=1Y=(X-3)/2=-1

二分之x+y-三分之x-y=六分之五① 六分之x+y-三分之x-y=二分之一②解方程组

(x+y)/2-(x-y)/3=5/6①(x+y)/6-(x-y)/3=1/2②①②等号两边分别同时乘以6去分母得:3(x+y)-2(x-y)=5(x+y)-2(x-y)=3令(x+y)=a,(x-y

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

将抛物线y=ax²向右平移2个单位所得抛物线的顶点为a,与y

解题思路:利用“减右加左”的平移法则来平移,再利用经过B(0,4)来求出a,然后利用轴对称的知识找出点P。解题过程:解答过程见附件。最终答案:略

抛物线y=ax的平方+k的顶点坐标是(0,2),且形状即开口方向与y=负二分之一x的平方相同,

由题得,开口方向,大小与y=-1/2x^2相同,则a=-1/2将(0,2)代入y=ax^2+c中得,:c=2所以y=-1/2x^2+x後面的就会了打字不易,

求抛物线y=-½x²-3x+二分之七的对称轴和顶点坐标

y=-½x²-3x+二分之七=-½(x²+6x)+7/2=-½(x²+6x+9)+7/2-9/2=-(x+3)²-1对称轴是直线x

写出抛物线Y等于-四分之三x方+二分之三x+四分之九的顶点坐标和对称轴.,并说明该抛物线是有那一条形如y等于ax方的抛物

y=-3/4x²+3/2x+9/4=-3/4(x²-2x)+9/4=-3/4(x-1)²+3∴顶点坐标是(1,3),对称轴是x=1y=-3/4x²,向右平移1个

如图,抛物线y=-x平方+ax+b与x轴交与a(-二分之一,0),b(2,0),而且与y轴交与c,

①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1

已知抛物线y=ax的 平方+bx的顶点坐标在 直线Y=fu二分之一x-1上,切 过 点(4,0)

我不知道A点是什么,我当A点是(4,0)来说.对于第二问,由于知道了抛物线方程,因此可知P的坐标.下面分情况讨论:1、如果OP//AB,可以先算出OP的斜率k,再由直线点斜式方程y=k(x-4),与抛

a+b=b+a a+b+c=a+(bxc) axbxc=ax(bxc) (a+b)xc=axc+bxc 运用了什么运算律

运用了加法交换定律乘法交换律乘法分配律

y=二分之一x*2+X-二分之五 用配方法求其顶点坐标和对称轴 若抛物线与X轴的两个交点A、B,求线段AB长

Y=﹙1/2﹚﹙X²+2X+1²-1²﹚-5/2=﹙1/2﹚﹙X+1﹚²-3∴y=二分之一x*2+X-二分之五顶点坐标为:(-1,-3)对称轴为关于X=-1的点

抛物线抛物线y=ax的平方+bx+c.

将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: