抛物线y=2x²-2根号2x 1与坐标轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:21:42
抛物线y=2x²-2根号2x 1与坐标轴
抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2

由题意可知A、B两点经过F(1,0)点,且直线斜率一定存在,设直线AB:y=k(x-1),(k>0),与椭圆方程联立,k²x²-(2k²+4)x+k²=0x1+

抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=

解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1

已知抛物线 y=x^2+bx-x+c与x轴交点的横坐标为X1、X2,且X1>0,X2=X1+1.

设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy

抛物线y=2x

∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.

已知抛物线y=ax^2 +bx+c 与X轴交于A(X1,0) B(X2,0) X1小于X2,与Y轴交于点C 抛物线顶点为

(1)、根据已知条件和抛物线的顶点坐标,可得以下三式a-b+c=0-b/2a=1(4ac-b^2)/(4a)=-4解之得,a=1b=-2c=-3解析式为y=x^2-2x-3x2=3B点坐标(3,0)C

抛物线y=ax²-2ax+m经过点P(4,5),与x轴交于A(x1,0),B(x2,0)两点,x1

由抛物线经过点P(4,5),得到8a+m=5⑴再由三角形PAB的面积=10,得到(1/2)*(x2-x1)*5=10,得到x2-x1=4因为x2+x1=2,x2*x1=m/a所以(x2-x1)^2=(

抛物线+直线过抛物线y^2=4x的焦点作直线,交抛物线于点A(x1,y1)B(x2,y2),若y1+y2=2乘根号2,则

易知,p=2,F(1,0),由于直线过点F,故设直线AB的方程为x=my+1(点斜式的对偶形式)代入y²=4x,得y²-4my-4=0,所以y1+y2=4m=2√2解得m=√2/2

已知抛物线y=-1/6x^2+bx+c的顶点为P,与x轴的正半轴交于A(x1,0),B(x2,0) (X1

C点x=0,则有y[1]=c;由韦达定理得:x[1]+x[2]=6b,x[1]•x[2]=-6cAM斜率:k[1]=(-(3/2)-0/0-x[1])=(3/2x[1])BC斜率:k[2]

初二二次函数.已知:开口向下的抛物线y=ax^2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1

∵S△ABC=15,即,[(x2-x1)×(AB×OC)/2=15,x2-x1=6,∵a+b+c=0,∴a+c=-b,(a+c)²=(-b)²=b²,[-b±√(b&su

过抛物线y^2=2px(p>0)的焦点作一条直线,叫抛物线于点A(x1,y1),B(x2,y2),则(y1*y2)/(x

A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2

已知A(x1,2002),B(x2,2002),是抛物线y=ax^2+bx+c上的两点,则当x=x1+x2时,二次函数的

点A和点B关于抛物线的对称轴对称对称轴是x=(x1+x2)/2x1+x2、0,与对称轴等距所以x=x1+x2时,二次函数的值是c原题中c=5吧?

已知抛物线y=ax2+bx+c的图像与x轴交点(-2,0)、(x1,0) ,.

由二次函数的图像的特点,函数图像与x轴交于y轴两侧,且与y轴交于正半轴,所以它开口一定向下,即a<0…………………(1)(如草图)设二次函数图像与x轴的两个交点分别为x1(1<x1<2)、x2=-2那

求抛物线方程顶点式,y=a(x-x1)(x-x2)化简后得y=a(x^2-x(x1+x2)+x1x2)

这就是韦达定理对一元二次方程ax²+bx+c=0的两根为x1x2,则x1+x2=-a/bx1x2=a/c令y=a(x-x1)(x-x2)=0得x=x1x=x2即图像与x轴的交点也就是a(x-

过抛物线y^2=4x焦点做直线交抛物线于A(x1,y1)B(x2,y2),若y1+y2=5,求线段AB

焦点(1,0),准线x=-1A到准线距离=x1-(-1)=x1+1B到准线距离=x2+1抛物线上的点到焦点和到准线距离相等所以AB=AF+BF=A到准线距离+B到准线距离=x1+1+x2+1=x1+x

过抛物线y^2=-2x焦点的直线交抛物线于A(x1,y1),B(x0,y0)且x1+x2=6,求|AB|

焦点坐标(-1/2,0)y=k(x+1/2)y^2=-2xk^2x^2+(k+2)x+k^2/4=0x1+x2=(k+2)/k^2=6k=5/6k=-2/3

过抛物线y=4x^2的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=5

/>利用抛物线的定义即可抛物线x²=(1/4)y准线是y=-1/16,焦点F(0,1/16)利用抛物线的定义|AF|=y1+1/16,|BF|=y2+1/16∴|AB|=|AF|+|BF|=

已知过抛物线y^2=2px(p>0)的焦点 斜率为2根号2的直线交抛物线于A(x1,y1),B(x2,y2) -(x1

焦点(p/2,0)设直线AB:y=2√2(x-p/2)代入y²=2px得4x²-5px+p²=0x1+x2=5p/4|AB|=x1+x2+p=9p/4=9p=4即抛物线y

抛物线y=x2上两点A(x1.y1)B(x2,y2)关于直线y=x+m对称,且x1*x2=-1/2,求m

A,B在抛物线y=2x^2上则y1=2x1^2y2=2x2^2A(x1,2x1^2)B(x2,2x2^2)AB关于直线y=x+m对称则直线AB与直线y=x+m垂直斜率乘积为-1即[(2x2^2-2x1

已知点(x1,y1)和(x2,y2)在抛物线y=-x^2+4x+c上

y=-x²+4x+cy=-(x-2)²+c-41、当x1