抛物线y2=2x与直线x=2所围图形为底,而垂直于抛物线轴的截面为等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:19:58
抛物线y2=2x与直线x=2所围图形为底,而垂直于抛物线轴的截面为等边三角形
直线y=x-2与圆(x-1)2+y2=4所截得的弦长为

圆心到(1,0)的距离是|1-2|/√2=√2/2圆的半径是2根据勾股定理,半弦长,圆心到直线距离,和半径构成直角三角形,所以有半弦长=√[2^2-(√2/2)^2]=√14/2所以弦长=√14

求抛物线y = x(x-2) 与直线y=x所围成的平面图形的面积

x(x-2)=xx=0或x-2=1x=0或x=3所以面积=∫(0,3)[x-x(x-2)]dx=∫(0,3)[-x²+3x]dx=[-x³/3+3x²/2]|(0,3)=

如图,已知抛物线C:y2=x和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)作两条直线与⊙M

根据图形对称性特点,最小截距出现在AB平行于Y轴的情况下(EF平行Y轴),易求E点坐标(4,2),OE=2,OA=1,则易求A纵坐标为1/2,所以t的最小值是1/2

抛物线y2=2x与过焦点的直线交于A、B两点,焦点指什么,怎么求

抛物线y^2=2px=2xp=1那么p/2=1/2故抛物线的焦点是(1/2,0)如果不懂,请Hi我,祝学习愉快!

设抛物线y2=4x被直线y=2x+b所截得的弦长为35,则b= ___ .

直线y=2x+b代入y2=4x,消去y,得4x2+(4b-4)x+b2=0.设A(x1,y1),B(x2,y2)则x1+x2=-b+1,x1x2=b24.所以|AB|=1+k2|x1-x2|=1+4•

已知两直线y1=2x-3与y2=6-x,求这两条直线与x轴所围成的三角形ABC的面积

由{y1=2x-3    y2=6-x解得x=3, y=3则两直线的交点是C(3, 3)在y1=2x-3中,令y=0,得x=1.5;则此直线与X轴的交点坐标是A(1.5, 0);在y2=6-x中,令y

已知直线y1=-3x+6和抛物线y2=-2x2+3x+2

(1)-3X+6=-2X²+3X+2-2X²+6X-4=0X²-3X+2=0(X-1)(X-2)=0X1=1,X2=2,当X=1或2时,Y1=Y2(2)由于二次函数开口向

求由抛物线y2=2x 及直线 y=x-4=0所围成的平面图形的面积

先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0

直线l过抛物线y^2=29x(p>0)的焦点,且与抛物线相交于A(x1,y2),B(x2,y2)两点,点C在抛物线的准线

证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可

已知抛物线的方程y2=4x,过定点P(-2,1)且斜率为k的直线l与抛物线y2=4x相交于不同的两点.求斜率k的取值范围

直线l的方程为:y-1=k(x+2),化为y=kx+2k+1.联立y=kx+2k+1y2=4x,化为k2x2+(2k+4k2-4)x+(2k+1)2=0,∵直线l与抛物线y2=4x相交于不同的两点.∴

设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为

两个切点是关于X轴对称的,所以如果最后解出来的方程是关于X的,那么Δ=0,如果方程是关于Y的,则Δ=0,且两根互为相反数

设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包括边界)内,则圆的半径能取到的最大值为(  )

当圆C半径取最大值时,由对称性知,圆心C应在x轴上区间(0,3)内,且圆C与直线x=3相切,设此时圆心为(a,0)(0<a<3),则圆C方程为(x-a)2+y2=(3-a)2‎,把y2=2x代入其中得

已知抛物线y=2x平方和直线y=4x (1)求此抛物线与直线所围成图形的面积

(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x

求抛物线y2=x与直线x-2y-3=0所围成的图形的面积

y^2=xx-2y-3=0两式联立解得:y1=3,y2=-1,所以x1=9,x2=1取y=-1,3分别为积分上下限面积=∫(上限3下限-1)(抛物线方程-直线方程)dy=∫(上限3下限-1)(y^2-

求抛物线y2=x与直线x-y-2=0所围成的图形的面积.

抛物线y2=x与直线x-y-2=0方程联解,得两个图象交于点B(1,-1)和A(4,2),得所围成的图形面积为:S=∫102xdx+∫41(x−x+2)dx=92.故抛物线y2=x与直线x-y-2=0

直线l与抛物线y^2=x相交于A(x1,y1),B(x2,y2)两点,与x轴相交于M,若y1*y2=-1

证明:(1)设直线l的方程为x=ay+b∵A(x1,y1),B(x2,y2)在抛物线y^2=x上∴x1=y1^2,x2=y2^2∵A,B也在直线l上∴x1=y1^2=ay1+b,x2=y2^2=ay2

过抛物线y2=2x 的焦点F作直线

抛物线的过焦点弦有个性质:1/|AF|+1/|BF|=2/p.本题中,2p=2,因此p=1,所以1/|AF|+1/|BF|=2,-----------(1)又|AF|+|BF|=25/12,-----

已知点A(0,2)和抛物线C:y2=6x,求过A且与抛物线C相切的直线方程

1.抛物线以原点为顶点,而A在y轴上,所以y轴是它的一条切线,即x=02.当切线的斜率存在时,设方程为y=kx+2,把x=y²/6代入得y=ky²/6+2,即ky²-6y