抛物线y2=2px上的点M到定点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:33:37
设焦点为F∵d=6,FM为过焦点的线段,∴x+p/2=6∴p=4∴抛物线方程为y²=8x又因为M在抛物线上,∴M(4,4√2)
第1问:M到焦点的距离等于到准线的距离,所以p/2+2=3,得,p=2,所以,方程为y平方=4x
可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为
根据定义,点M与准线的距离也是2P,设M(x0,y0),则M与准线的距离为:x0+p2∴x0+p2=2P,x0=32p,∴y0=3P,∴点M的坐标(32p,3P)故选A.
易知抛物线y²=2px的焦点在x轴的正半轴上,且其准线方程为:x=-p/2,其中p>0由抛物线定义可知:点P到焦点的距离与它到准线的距离相等那么:2+(p/2)=3解得:p=2所以抛物线方程
先明确p0,直线与抛物线相交,最小距离为0)作一条直线与x+y-1=0平行,且与抛物线相切因为“抛物线y2=2px上的点到直线x+y-1=0的最小距离为8分之3根号2”,所以可得直线方程为y=-x+1
设P(x,y),F(p/2,0),设M(yo^2/2p,yo),所以x=(p^2+yo^2)/4p,y=yo/2,所以y^2=px-p^2/4,这就是轨迹方程
(1)依题意,得:p2+4=5,∴p=2.抛物线标准方程为:y2=4x(2)设圆心C的坐标为(y204,y0),半径为r.∵圆心C在y轴上截得的弦长为4∴r2=4+(y204)2圆心C的方程为:(x−
(1)抛物线y2=2px的准线为x=−p2,于是4+p2=5,∴p=2.∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),又∵F(1,0),∴kFA=43;
由于抛物线上各点与焦点距离的最小值为2,∴p2=2,∴2p=8,∴抛物线的方程为y2=8x设点N((x,y),则M(2-x,2-y),代入抛物线方程得:(y-2)2=-8(x-2),故选C.
点M到焦点的距离为6则M到准线的距离也是6准线是x=4-6=-2=-p/2p=4抛物线方程是y^2=8xx=4时y=±4√2所以m=±4√2
根据抛物线方程可知准线方程为x=-p2,且32=2pm,⇒m=92p∵M点到抛物线焦点的距离为5,根据抛物线的定义可知其到准线的距离为5,∴92p+p2=5,即p2-10p+9=0,解得:p=1或p=
抛物线y²=2px的准线为x=-p/2,设M横坐标为x∵M在抛物线上,∴M到焦点的距离等于M到准线的距离即x+p/2=2p,则x=3p/2则y²=2p×3p/2=3p²,
抛物线y²=2px的准线为x=-p/2,设M横坐标为x∵M在抛物线上,∴M到焦点的距离等于M到准线的距离即x+p/2=2p,则x=3p/2则y²=2p×3p/2=3p²,
设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’
(Ⅰ)由抛物线定义,抛物线C:y2=2Px(p>0)上点P(4,y0)到焦点的距离等于它到准线x=−p2的距离,得5=4+p2,∴p=2,所以抛物线C的方程为y2=4x;(Ⅱ)证明:由y2=4xy=k
由题意可知:抛物线线y2=2px(p>0)的准线方程为x=-4∴p=8则点M(1,4),双曲线x2a-y2=1的左顶点为A(-a,0),所以直线AM的斜率为k=41+a,由题意可知:41+a=1a∴a
∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+p2=5,p=8