抛物线y2=2px 有一内接三角形 5根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:53:12
(1)∵抛物线的方程为y2=2px(p>0),∴当p=4时,y2=8x,代入y=2,解得x=12.则由抛物线定义知:该点到焦点F的距离即为其到准线x=-2的距离,∴该抛物线上纵坐标为2的点到其焦点F的
(1)若AB垂直于x轴,A(p/2,p),B(p/2,-p),则Y1*Y2=-p^2(2)若AB不垂直于x轴,设直线AB:y=k(x-p/2)与y^2=2px联立消去x得:ky^2-2py-kp^2=
直线方程为y=x+p/2与抛物线方程联立.AB=8=(根号2)X(Y1-Y2)用韦达定理,得P=2
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".对于抛物线y²=2px其焦点为(p/2,0)和准线为x=-p
(1)抛物线的焦点为(p/2,0),设直线方程为x=my+p/2,代入抛物线方程得y^2=2p(my+p/2),化简得y^2-2pmy-p^2=0,因为y1、y2是方程的两个根,因此,由二次方程根与系
依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x
A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2
x2/6+y2/2=1a^2=6,b^2=2,c=2右焦点(2,0)y2=2px的焦点(p/2,0)p/2=2,p=4
由双曲线x27-y29=1得右焦点为(4,0)即为抛物线y2=2px的焦点,∴p2=4,解得p=8.∴抛物线的方程为y2=16x.其准线方程为x=-4,∴K(-4,0).过点A作AM⊥准线,垂足为点M
根据图形,有且只有两个交点,将c1和c2方程联立,消去y,可得到一个带参数p的关于x的一元二次方程,由关于p的判别式可得出方程有一正一负两个实数根,但由c1方程可知,x值只能为正,也就是说c1和c2的
抛物线的焦点F为(p2,0),双曲线x23-y2=1的右焦点F2(2,0),由已知得p2=2,∴p=4.故答案为4
为了便于理解,先自己画个图出来,(以原点为顶点,暂定x轴正方向为开口方向的抛物线)设另外两个顶点分别为M、N,M在第一象限,N在第四象限.然后知道M点是过直线y=2x的(一条直角边)则M点为抛物线和直
双曲线x26−y23=1的a=6,b=3∴c=6+3=3∴右焦点F(3,0)∴抛物线y2=2px的焦点(3,0),∴p2=3,p=6.故答案为:6
已知一条直角边的方程为y=2x,且直角顶点在原点则另一条直角边的方程为y=-1/2x,设交于A(x1,y1)、B(x2,y2)两点联立y²=2px1y=2x1y²=2px2y=-1
焦点是(p/2,0)在x+y-1=0p/2+0-1=0p=2所以y²=4x
1、因为A,B关于M(2,2)对称,所以,AB中点为M(2,2)则可设AB:x=m(y-2)+2,A(x1,y1),B(x2,y2)(显然直线斜率存在且不为0,斜率不存在的话,弦的中点肯定在x轴上;斜
对于直线与圆锥曲线相交所得的弦长问题,基本上都是利用弦长公式,通过待定系数来求解的.由于本题的圆锥曲线比较特殊(抛物线,其离心率为1;角度为60°,是特殊角),还存在另外两种方法.1、利用弦长公式,即
当直线斜率存在时,设直线方程为y=k(x-p/2)与y^2=2px联立,消去x,得y^2=2p(y/k+p/2)即y^2-2py/k-p^2=0所以y1*y2=-p^2,当直线斜率不存在即与x轴垂直时
整理双曲线方程得x22−y22=1∴a=2,b=2,c=2+2=2∴双曲线的左准线方程为x=-a2c=-1∴抛物线的准线方程为x=-1∴p=2∴抛物线的焦点坐标为(1,0)故答案为(1,0)
椭圆x210+y26=1的右焦点为(2,0),则抛物线y2=2px的焦点(2,0),∴抛物线方程为y2=8x延长MN交抛物线y2=4x的准线x=-1于P,则|MN|=|MF|,∴要使|MA|+|MN|