抛物线Y =AX ² BX-3A经过A(-1,0),C(0,-3)))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:53:08
抛物线Y =AX ² BX-3A经过A(-1,0),C(0,-3)))
已知:抛物线C1:Y=ax方;+bx+c,经过点A(-1,0)、B(3,0)、C(0,-3).

(1)待定系数法:三点代入c1可以得出方程0=a-b+c0=9a+3b+c-3=c解得:a=1,b=-2,c=-3.c1:y=(x-1)^2-4(2)左移三个单位(由图可得)(3)c1顶点为(1,-4

抛物线y=ax^2+bx经过D(4,3) A(6,0) 求其表达式

3=16a+4b0=36a+6b整理16a+4b=3(1)6a+b=0由6a+b=0得b=-6a带入(1)得16a-24a=3a=-3/8b=9/4y=(-3/8)x^2+(9/4)x

如图,抛物线y=ax²+bx+c(a≠0)经过A(-3,0)、B(1,0)、C(-2,1)交y轴于点M

初三可能不会求导,那么就先求DF方程与x轴交点

已知抛物线y=ax的平方+bx+c开口向下,并且经过A(0.1)和M(2,-3),若抛物线的对称轴在y轴的左侧,

y=ax的平方+bx+c开口向下,∴a<0过A(0.1)和M(2,-3)∴1=0+0+c,c=1-3=4a+2b+1,2a+b=-2(1)如果抛物线的对称轴为直线x=-1,-b/(2a)=-1b=2a

抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)

解题思路:本题较难,第三问分类讨论解题过程:最终答案:略

已知抛物线y=ax平方+bx+c(a不等于0)的图象经过一、二、四象限,则直线y=ax+b不经过第几象限

解析:二次函数y=ax²+bx+c的图像经过一、二、四象限,不经过第三象限,说明:抛物线开口向上,即a>0;函数对称轴在y轴右侧,即x=-b/(2a)>0,所以结合a>0,知b0,

抛物线y=ax^2+bx(a>0)经过原点O和点A(2,0)

(1)根据图示,由抛物线的对称性可知,抛物线的对称轴与x轴的交点坐标(1,0);(2)抛物线的对称轴是直线x=1.根据图示知,当x<1时,y随x的增大而减小,所以,当x1<x2<1时,y1>y2;

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

已知抛物线y=ax²+bx+c经过点A(0,3)、B(3,0)、C(4,3).求抛物线的函数表达式.

答:抛物线经过点A(0,3)和点B(3,0)和C(4,3)因为点A和点C关于直线x=(4+0)/2=2对称所以:抛物线对称轴x=2设抛物线为y=a(x-2)²+c点A和点B代入得:y(0)=

如图,已知抛物线y=ax的平方+bx+c经过A(-1,0),B(3,0),直线BC经过B,C两点.

⑴抛物线经过A、B、C得方程组:c=-3,a-b+c=09a+3b+c=0解得:a=1,b=-2,c=-3,∴抛物线的解析式为:Y=X^2-2X-3.⑵直线BC的解析式为:Y=X-3,过P作BC的平行

已知抛物线y=ax^2+bx+3(a不等于0)经过A(3,0)B(4,1)两点,且与Y轴交予点C

(1)将A(3,0),B(4,1)两点坐标代入抛物线方程解得a=1/2b=-5/2抛物线方程为y=1/2x^2-5/2x+3点C为其与y轴交点,横坐标为0,代入得c(0,3)(2)kAB=(1-0)/

已知抛物线y=ax^2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴9a+3b+3=0,16a+4b+3=1解得:a=1/2,b=-5/2,∴y=1/2x^2-5/2x+3;∴点C的坐标

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

二次函数y=ax^+bx+c经过点A(1,3),B(2,4),C(3,3),那么抛物线y=ax^+bx+c的顶点坐标?

由于它同时经过(1,3)和(3,3),可知抛物线的对称轴为x=2,而B的横坐标为2,说明它就在x=2上,那么B(2,4)就是抛物线的顶点.

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

已知抛物线y=ax²+bx+c(a≠0)经过(0,1)和(2,-3)两点.①如果抛物线开口向下,对称轴在...

(1)将两点坐标带入方程,得c=1,-3=4a+2b+c-4=4a+2bb=-2-2ay=ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a开口向下,所以a

抛物线y=ax方+bx+c(a≠0)图像经过原点,则

抛物线y=ax方+bx+c(a≠0)图像经过原点c=0对称轴x=-b/2ay=ax方+bx=a(x+b/2a)²-b²/4a²顶点坐标(-b/2a,-b²/4a

已知抛物线y=ax^2+bx+c经过点A(4,2)B(5,2) 求抛物线表达式

抛物线一般要知道三个点才能求出表达式,因为有三个系数两个是求不出来的

已知抛物线y=ax^2+bx+c(a不等于0)(1)如果抛物线y=ax^2+bx+c经过点A(3,0)、B(-1,0)、

(1).y=-2x^2+4x+6,对称轴为直线x=1(2).2;2(3)-b/a理由:因为p、Q两点的纵坐标相同所以x1、x2为同一方程y0=ax^2+bx+c的两解将y0移至等号右侧,则有ax^2+