抛物线y 2分之x的平方与过点M(0,-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:08:58
抛物线y 2分之x的平方与过点M(0,-1)
已知抛物线y1=ax的平方+c与x轴交于点A,B,与y轴交于点C.抛物线y2与抛物线y1关于x轴对称,与y轴交于点D,若

选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴

已知抛物线C:y2=4x 的准线与x轴交与M点,F为抛物线的焦点,过M点斜率为k的直线l与抛物线交与A B两点.

存在.直线l:y=k(x+1)(k≠0)联立y=k(x+1),y²=4x.消去x得.y²-4y/k+4=0Δ=16/k²-16>0.解得k²

已知直线l通过抛物线x平方=4y的焦点F,且与抛物线交于A、B两点,分别过A、B两点的抛物线的两条切线相交于点M,则角A

x²=4y,准线y=-1设A(x1,x1²/4),B(x2,x2²/4),AB中点为C,作AD⊥准线于D,BE⊥准线于E直线L:y-1=kx,即y=kx+1联立直线抛物线

过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点

由题设函数为y=kx+b带入点P(2,0)得到0=2k+b则b=-2k从而y=kx-2k因为直线L与y²=x交于两点则(kx-2k)²=xk²x²-4k

已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为K的直线交于A,B两点,若向量MA与向量MB的内积=0,则

你这样MAMB的积不为0,只有当一个向量为零向量或两向量垂直时才行这种思路没错但所求的直线应该是你画的线的垂线k=2貌似是哪年的全国卷再问:2013年的已经明白了我记错了cos0度的值谢谢

已知抛物线y2=4x,点M(1,0)关于y轴对称点为N,直线L过点M交抛物线于AB两点.

N(-1,0)直线L:x=ty+1,与抛物线y2=4x联立后得y^2-4ty-4=0,y1+y2=4t,y1y2=-4(1)kNA+kNB=y1/(y1^2/4+1)+y2/(y2^2/4+1)=[1

二次函数题目:已知直线y=-三分之根号三x+m(m>0)与x轴交于点C,与y轴交于点E,过E点的抛物线y=ax的平方+b

再问:可否帮忙画个图再答:画不了再问:为什么D点不可以在(0,-m)再答:为什么在?

过点M(1.2)作抛物线y=2x-x平方的切线求此切线方程

设切线斜率是ky-2=k(x-1)y=kx+2-k代入kx+2-k=2x-x²x²+(k-2)x+(2-k)=0相切则只有一个公共点所以方程有一个解所以判别式等于0所以(k-2)&

抛物线Y=-2分之X的平方与过点M(0,1)的直线L交于A,B两点,O为原点,若OA,OB的斜率之和为1,求直线L

设直线L方程y=kx+b过点M(0,1),1=k*0+b,b=1y=kx+1与y=-x^2/2交点A(x1,y1),B(x2,y2)OA斜率=y1/x1,OB斜率=y2/x2y1/x1=-x1^2/2

已知点p的抛物线y2=10x上的动点,求点p与M(m,0)的距离最小值

设P=(y²∕10,y),距离d²=(y²/10-m)²+y²可求d²的最小值令D=d²,Y=y²,对D求导,或者将方程

直线l过抛物线y^2=29x(p>0)的焦点,且与抛物线相交于A(x1,y2),B(x2,y2)两点,点C在抛物线的准线

证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可

如图所示,过点F(0,1)的直线y=kx+b与抛物线 y=1/4x^2交于M(x1,y1)和N(x2,y2)两点(其中x

如图所示,过点F(0,1)的直线y=kx+b与抛物线y=14x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).(1)求b的值.(2)求x1•x2的值.(3)分别过M

如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.

解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=54d,∴cosα=d|AM|=45,则sinα=1−cos2α=1−(45)2=35,∴k=±tanα=±sinαcosα

过点A(1,0)的直线l与抛物线y2=8x交与M,N亮点,求线段MN的中点的轨迹方程,可以用参数方法做么?

设M(x1,y1)N(x2,y2)线段MN的中点P(x,y)则2x=x1+x22y=y1+y2M,N在抛物线y2=8x上则y1^2=8x1y2^2=8x2相减(y1-y2)(y1+y2)=8(x1-x

过抛物线y2=4x的焦点作直线交抛物线于点A(x1,y1),B(x2,y2)若|AB|=7,则AB的中点M到抛物线准线的

由抛物线的方程y2=4x可得p=2,故它的焦点F(1,0),准线方程为x=-1.由抛物线的定义可得|AB|=7=|AF|+|BF|=(x1+1)+(x2+1),∴x1+x2=5.由于AB的中点M(x1

过点(1,0)作倾斜角4分之π的直线,与抛物线y²=2x交于M.N两点,则|MN|=

直线的斜率是k=tan(π/4)=1则直线方程是:x-y-1=0即:y=x-1代入抛物线y²=2x中,得:(x-1)²=2xx²-4x+1=0这个方程的两个根是x1、x2

已知点A(0,2)和抛物线C:y2=6x,求过A且与抛物线C相切的直线方程

1.抛物线以原点为顶点,而A在y轴上,所以y轴是它的一条切线,即x=02.当切线的斜率存在时,设方程为y=kx+2,把x=y²/6代入得y=ky²/6+2,即ky²-6y