抛物线C:y2=2PX,与椭圆E:有相同焦点F,两条曲线在第一象限内的交点为A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:17:10
(I)由题意,抛物线C与直线l1:y=-x的一个交点的坐标为(8,-8),代入抛物线方程可得64=2p×8,∴2p=8,∴抛物线C方程为y2=8x;(II)∵不过原点的直线l2与l1垂直,∴可设l2的
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外,F称为"抛物线的焦点",l称为"抛物线的准线".对于抛物线y²=2px其焦点为(p/2,0)和准线为x=-p
椭圆:焦点在x轴上,x∧2/a∧2+y∧2/b∧2=1(其中a,b>0且a>b)焦点在y轴上,x∧2/b∧2+y∧2/a∧2=1(其中a,b>0且a>b)抛物线方程,y∧2=2px或者x∧2=2py
因抛物线的焦点为(p/2,0),这也是椭圆的右焦点,所以椭圆的半焦距c=p/2.2c=p.又两条曲线的交点连线必垂直于X轴,即为直线x=p/2.,代入抛物线方程可得y=+-p.所以交点为(p/2,p)
(Ⅰ)椭圆x2p2+y23=1的左焦点为(-p2−3,0),抛物线C:y2=2px(p>0)的准线x=-p2,∴-p2−3=-p2,∴p=2,∴抛物线C的方程为y2=4x;(Ⅱ)由已知得直线l的斜率一
x2/6+y2/2=1a^2=6,b^2=2,c=2右焦点(2,0)y2=2px的焦点(p/2,0)p/2=2,p=4
(1)抛物线准线是x=-p/2 所以p=2y²=4x设A(x1,y1) B(x2,y2) 中点为(x,y)那么y1+y2=2
因为点A(1,2)是抛物线C:y2=2px与直线l:y=k(x+1)的一个交点,所以4=2p,2=2k所以p=2,k=1,所以抛物线方程为y2=4x,l的方程为x-y+1=0所以抛物线的焦点为(1,0
根据图形,有且只有两个交点,将c1和c2方程联立,消去y,可得到一个带参数p的关于x的一元二次方程,由关于p的判别式可得出方程有一正一负两个实数根,但由c1方程可知,x值只能为正,也就是说c1和c2的
依题意抛物线y2=2px(p>0)的焦点F与椭圆x2a2+y2b2=1(a>b>0)的一个焦点重合,得:c=p2,由TF=b2a及TF=p,得b2a=p,∴b2=2ac,又c2+b2-a2=0,∴c2
椭圆x28+y24=1的右焦点是F(2,0).∵抛物线y2=2px的焦点与椭圆x28+y24=1的右焦点重合,∴抛物线y2=2px的焦点是F(2,0),∴p=4.故选:D.
解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=54d,∴cosα=d|AM|=45,则sinα=1−cos2α=1−(45)2=35,∴k=±tanα=±sinαcosα
双曲线x26−y23=1的a=6,b=3∴c=6+3=3∴右焦点F(3,0)∴抛物线y2=2px的焦点(3,0),∴p2=3,p=6.故答案为:6
角ADB=90度有题可知P=2设A(X1,Y1)B(x2,y2)则D(2,y1+y2/2)向量DA=(x1-2,y1-y2/2)DB=(x2-2,y2-y1/2)角ADB=向量DA*向量DB/DA模*
设点A坐标为(x0,y0)依题意可知p2=a2−b2,x0=p2代入椭圆方程得a2−b2a2+y 02b2=1(*)根据抛物线定义可知y0=p=2a2−b2=2c∴y20=4c2,代入(*)
抛物线参数方程为y=t,x=′t22p,设B(t212p,t1),C(t212p,-t1),A(t222p,t2)所以求得AC的直线方程为y-t2=(t2−t1)(x−t222p)t222p−t212
整理双曲线方程得x22−y22=1∴a=2,b=2,c=2+2=2∴双曲线的左准线方程为x=-a2c=-1∴抛物线的准线方程为x=-1∴p=2∴抛物线的焦点坐标为(1,0)故答案为(1,0)
椭圆x210+y26=1的右焦点为(2,0),则抛物线y2=2px的焦点(2,0),∴抛物线方程为y2=8x延长MN交抛物线y2=4x的准线x=-1于P,则|MN|=|MF|,∴要使|MA|+|MN|