把直角坐标系下的二次积分化为极坐标形式的二次积分时,有(    )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:10:12
把直角坐标系下的二次积分化为极坐标形式的二次积分时,有(    )
化为极坐标形式的二次积分,并计算积分值

积分区域是圆的四分之一区域经济数学团队帮你解答.满意请及时评价.谢谢!

将直角坐标系下的二次积分化为极坐标系下的二次积分∫(0,2)dx∫(0,(2x-x^2)^1/2)f(x,y)dy

先画积分区域:本题积分区域为x²+y²≤2x的上半圆,将曲线x²+y²=2x写为极坐标形式为r=2cosθ这样积分可化为∫∫f(x,y)dxdyD:x²

RT.二次积分 ∫(π/2 0) dθ∫(cosθ 0)f(rcosθ,rsinθ)rdr转为直角坐标系下的二次

x=rcosθy=rsinθ雅科比矩阵为cosθ-rsinθsinθrcosθ行列式值为r于是dxdy=rdrdθ另外要看清积分区域

将二重积分∫∫f(x,y)dxdy化为极坐标下的二次积分

D为圆(x-1)^2+(y-1)^2=1的内部,这个圆与x轴相切于点(1,0),与y轴相切于点(0,1),圆内所有点均在第一象限内.两个切点(1,0)与(0,1)是边界点,幅角a的范围是0到π/2,而

怎样把自然坐标系下的坐标变换成直角坐标系下的坐标

在自然坐标系下,曲线的方程其实就表述了自然坐标,比如y=y(x),形式不唯一,以曲线而定,把其化为直角坐标就是x=xy=y(x)

将直角坐标系下的二重积分化为极坐标下的二重积分:∫dx∫f(x,y)dy=

积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆

将二重积分∫dx∫f(x,y)dy转化为极坐标系下的二次积分

这个没必要化成极坐标啊真要化,结果应该是再问:过程别抄个结果下来糊弄再答:方法:

把直角坐标系方程x+y=0化为极坐标方程

ρcosθ+ρsinθ=0ρsinθ=-ρcosθsinθ/cosθ=-1tanθ=-1θ=3π/4

把下列积分化为极坐标形式并计算积分的值

再问:答案不是这个再答:再答:看错题了~~~

二次积分化为极坐标形式

角度应该是0到π/2,而r是为2/(sino+coso)

将二次积分化为极坐标形式的二次积分

这个积分区域应该是个边长为1的正方形内部.如果要用极坐标,令x=rcost,y=rsint,则dxdy=rdrdt则把正方形区域按照角度分为两个区域R1,R2其中R1={(r,t)|0≤r≤1/cos

把下面这积分化为极坐标形式下的二次积分

积分区域是半圆,化成极坐标为:r=2acosθ,(0≤θ≤π)原式=∫[0,π/2]dθ∫[0,2acosθ](r^2*r)dr=∫[0,π/2]dθ[0,2acosθ[r^4/4=(1/4)∫[0,

把积分化为极坐标形式

积分域D:由直线y=x,x=a,及x轴所围得平面域;将此平面域换成极坐标形式,则是:0≦r≦a/cosθ,0≦θ≦π/4;故原式=【0,π/4】∫dθ【0,a/cosθ】∫r²dr=【0,π

把f(x,y) 形成的二次积分化为极坐标形式的二次积分,其中积分区域D为

被积分函数的不用管了吧都是∫∫f(rcosθ,rsinθ)rdrdθ1.代入x=rcosθ,y=rsinθ则,

把下面这个积分化为极坐标形式下的二次积分

这不是书上的题吧?不是所有区域都适合用极坐标的,这个题不适合极坐标.再问:题目确实是这个样要求的

把下面这个积分化为极坐标形式下二次积分

x∈[0,t],y∈[0,x]x=pcost,y=psintt∈[0,π/4],p∈[0,√2acost]原式=∫[0,π/4]∫[0,√2acost]p*pdpdt再问:看不懂啊,t是哪里来的