把直角坐标系下的二次积分化为极坐标形式的二次积分时,有( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:10:12
积分区域是圆的四分之一区域经济数学团队帮你解答.满意请及时评价.谢谢!
先画积分区域:本题积分区域为x²+y²≤2x的上半圆,将曲线x²+y²=2x写为极坐标形式为r=2cosθ这样积分可化为∫∫f(x,y)dxdyD:x²
x=rcosθy=rsinθ雅科比矩阵为cosθ-rsinθsinθrcosθ行列式值为r于是dxdy=rdrdθ另外要看清积分区域
你好!答案如图
D为圆(x-1)^2+(y-1)^2=1的内部,这个圆与x轴相切于点(1,0),与y轴相切于点(0,1),圆内所有点均在第一象限内.两个切点(1,0)与(0,1)是边界点,幅角a的范围是0到π/2,而
在自然坐标系下,曲线的方程其实就表述了自然坐标,比如y=y(x),形式不唯一,以曲线而定,把其化为直角坐标就是x=xy=y(x)
积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆
这个没必要化成极坐标啊真要化,结果应该是再问:过程别抄个结果下来糊弄再答:方法:
ρcosθ+ρsinθ=0ρsinθ=-ρcosθsinθ/cosθ=-1tanθ=-1θ=3π/4
再问:答案不是这个再答:再答:看错题了~~~
角度应该是0到π/2,而r是为2/(sino+coso)
这个积分区域应该是个边长为1的正方形内部.如果要用极坐标,令x=rcost,y=rsint,则dxdy=rdrdt则把正方形区域按照角度分为两个区域R1,R2其中R1={(r,t)|0≤r≤1/cos
积分区域是半圆,化成极坐标为:r=2acosθ,(0≤θ≤π)原式=∫[0,π/2]dθ∫[0,2acosθ](r^2*r)dr=∫[0,π/2]dθ[0,2acosθ[r^4/4=(1/4)∫[0,
积分域D:由直线y=x,x=a,及x轴所围得平面域;将此平面域换成极坐标形式,则是:0≦r≦a/cosθ,0≦θ≦π/4;故原式=【0,π/4】∫dθ【0,a/cosθ】∫r²dr=【0,π
被积分函数的不用管了吧都是∫∫f(rcosθ,rsinθ)rdrdθ1.代入x=rcosθ,y=rsinθ则,
这不是书上的题吧?不是所有区域都适合用极坐标的,这个题不适合极坐标.再问:题目确实是这个样要求的
x∈[0,t],y∈[0,x]x=pcost,y=psintt∈[0,π/4],p∈[0,√2acost]原式=∫[0,π/4]∫[0,√2acost]p*pdpdt再问:看不懂啊,t是哪里来的