把复数方程变为直角坐标方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:14:50
套公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ,tanθ=y/x(x≠0)
过极点做直线的垂线交点就是了
原式可以转化如下:ρcosθ+ρ^3sinθ=ρ->x+(x^2+y^2)y=√(x^2+y^2).再问:第二问呢??在直角坐标系xoy中,曲线C:{x=√2cosθ,y=sinθ(θ为参数),过点P
极坐标与直角坐标的转化为:x=ρcosθ,y=ρsinθ,x^2+y^2=ρ^21.∵y=ρsinθ∴y=22.ρ(2cosθ+5sinθ)-4=2ρcosθ+5ρsinθ-4=2x+5y-4=03.
楼主做这类题目要知道极坐标换直角坐标的方法.极坐标上的点换成直角坐标的话是x=ρcosα,y=ρsinα,所以第(1)题就是y=2.第(2)题把ρ乘进去,跟第一问一样的做法,得到2x+5y-4=0.第
∵ρ(2cosθ+5sinθ)-4=2ρcosθ+5ρsinθ-4=2x+5y-4∴直线方程2x+5y-4=0.转化公式:x=ρcosθ,y=ρsinθ.
names
因为sina=2/pcosa=-p/10所以sin^a=(2/P)^cos^a=(p/10)^所以(sin^a+cos^a)=(2/P)^+(p/10)^所以(2/P)^+(p/10)^=1以上的^是
对于方程的化简来说,用p去乘方程的两端是不严格的变换,也就是说不是等价变换.它相当于给原方程增加了一个p=0,因为p=0的时候即使方程两端不等,乘完之后也是相等的(都等于0).p=0就是极点,增加了这
x=rcosθy=rsinθ
z=x+iy对照一下,x=acost,y=bsint复数方程是为了计算复数开放引进的,没有真实的意义.引进后发觉将实部与x坐标对应,虚部与y坐标对应,可以方便地处理平面几何问题,特别是转动,只要将z=
很简单再答:我要答了你给分不再问:求过程。当然给再答: 再答:给哦,嘿嘿再答:哇,你好有钱再问:一点分而已,不追求升级什么的再答:恩
ρ^2cosθ-ρ=0ρ(ρcosθ-1)=0ρ=0或ρcosθ=1即(0,0)或x=1解法二:ρ(ρcosθ-1)=0将x=ρcosθ,ρ=±√(x^2+y^2)代入得±√(x^2+y^2)(x-1
ρ=√(x^2+y^2),tanA=y/x,secA=[√(x^2+y^2)]/x,cosA=x/√(x^2+y^2),√(x^2+y^2)=4x/√(x^2+y^2),x^2+y^2=4x,(x-2
(1)消去t得(x-2)/a=(y-1)/(a+1)整理得(y-1)=(a+1)/a(x-2)很明显方程为斜率为(a+1)/a并且过点(2,1)的直线(2)消去t得cosα=1/2;sinα=二分之根
是y=五分之二倍根号五tx=五分之根号五t-1/2方法很多我个人喜欢做法是先变形y=2(x+1/2)就设y=at(x+1/2)=(1/2)bt再根据定义t前面的系数分别是直线的倾斜角的正弦和余弦a^2
(ρ,θ)→(x,y)x=ρcosθy=ρsinθ再问:我要的是方程怎么转化,不是坐标点~!!再答:怎么和你说呢f(ρ,θ)=0→g(x,y)=0.x=ρcosθy=ρsinθ你给我一个方程吧再问:将
x=ρcosθy=ρsinθ所以ρ=x平方+y平方cosθ=x/ρ全部换掉就是了x平方+y平方=2a【2+x/(x平方+y平方)】