把函数1 (1-x)展开为x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:25:12
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
令x+2=t,则x=t-2,展开成t的幂级数即可f(x)=1/[(x+2)^2+5]=1/(t^2+5)=0.2/(1+0.2t^2)=0.2[1-0.2t^2+(0.2t^2)^2-(0.2t^2)
f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i
1/(1-x^2)=1+x^2+x^4+...+x^2n+....(|x|
有f(x)=1/(2+3x)=1/5·1/{1-[-3(x-1)/5]}又因为1/(1-x)=1+x+x^2+x^3+···+x^n+···(-1
令t=x-1则x=t+1f(x)=1/(1+2x)=1/(1+2t+2)=1/(2t+3)=1/3*1/(1+2t/3)=1/3*[1-2t/3+4t^2/9-8t^3/27+.]=1/3-2t/9+
f=(x-2)^(-2)f'=-2(x-2)^(-3)f"=3!(x-2)^(-4)..f'n=(-1)^n*(n+1)!(x-2)^(-n-2)f'n(0)=(-1)^n*(n+1)!(-2)^(-
1/(1-x)=1+x+x^2+…x^n+…,(|x|
当X=2的时候,只需要看∑后面的,变成了∑(-1)^(n+1)/n乘(1-1/2^n),这是一个变号级数,用莱布尼茨判别法,通项(去掉∑(-1)^(n+1)的部分)大于等于0,并且是单调递减趋于0的,
建议:\x09ActiveWindow.ScrollRow=ScrollBarRows.Value‘将滚动条控件的值赋值给ActiveWindow对象的ScrollRow属性
-1/2+1/4*x-3/8*x^2+5/16*x^3-11/32*x^4+21/64*x^5...
y=(x^2)ln(1+x)对于F(x)=ln(1+x)导数为:F’(x)=1/(1+x)1/(1+x)=1-x+x^2-x^3+...+(-1)^(n-1)x^(n-1)+...n=1,2...则F
f(x)=1/(x-2)(x-3)=1/(x-3)-1/(x-2)=-1/(1-x/3)+1/(1-x/2)=-[1+x/3+x^2/3^2+...]+[1+x/2+x^2/2^2+...]=x(1/
因为1/(1+x)=1-x+x²+……+(-1)的n次方*x的n次方+……(-1,1)①1/x=1/[3+(x-3)]=1/3*1/{1+[(x-3)/3]}把(x-3)/3=x代入①,得1
为方便,记t=x+3f(x)=1/[(x+1)(x+2)]=1/(x+1)-1/(x+2)=1/(x+3-2)-1/(x+3-1)=1/(t-2)+1/(1-t)=-0.5/(1-t/2)+1/(1-
令t=x-1则x=t+1f(x)=1/(3+2t+2)=1/(5+2t)=0.2/(1+0.4t)=0.2[1-0.4t+0.4^2*t^2-0.4^3*t^3+.+(-0.4)^nt^n+..]这就
令f(x)=x/(x²-x-2)=x/(x-2)(x+1)=a/(x-2)+b/(x+1)去分母:x=a(x+1)+b(x-2)即x=(a+b)x+a-2b对比系数:1=a+b,0=a-2b
定义域为-1再问:答案用级数的方式表示是什么我算出来的和课后答案不一样再答:上面就是幂级数的方式呀再问:f(x)每项的通项公式?再答:通项为x^(2n-1)/(2n-1)
解题过程请看附图.