把下列参数方程化为普通方程x=x1 at y=y1 bt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:00:03
消去参数:cosθ=x+1sinθ=y-1平方,两式相加得:1=(x+1)^2+(y-1)^2这是一个半径为1,圆心为(-1,1)的圆.
消去t得到:x=1-3/4y整理得:4x+3y-4=0是一条过(0,-4)的直线
用加减消元法或代入消元法消去参数t即可.1)用加减消元法:x=3+4t5x=15+20ty=4-5t4y=16-20t5x+4y=312)用代入消元法x=3+4tt=(x-3)/4y=4-5(x-3)
(1)x=y^2-y-1=(t-1)^2-(t-1)-1=t^2-3t+1参数方程为x=t^2-3t+1y=t-1(2)y^1/2=a^1/2-x^1/2=a^1/2-a^1/2*cos^2θ=a^1
x-1=cos(2α)y=sin(2α)(x-1)^2+y^2=1一个(1,0)点的单位圆.
消去参数
就是y=4的一条直线,然后用x的参数方程求出x的范围为定义域就可以了.
x=sinθ+cosθy=sin³θ+cos³θx²=(sinθ+cosθ)²=sin²θ+cos²θ+2sinθcosθ=1+2sinθc
x=sinθ+cosθy=sin2θ于是,x^2=(sinθ+cosθ)^2=sin^2θ+cos^2θ+2sinθcosθ=1+sin2θ=1+y那么,y=x^2-1有不懂欢迎追问
x+y=2tx-y=2/t(x+y)*(x-y)=4
x/5=cosψy/3=sinψ=>x^2/5^2=cos^2ψy^2/3^2=sin^2ψ=>x^2/5^2+y^2/3^2=c0s^2ψ+sin^2ψ=1∴普通方程为x^2/5^2+y^2/3^2
(1)x=(t^2)^2+1x=(y-1)^2+1x=y^2-2y+1+1y^2-2y-x+2=0(2)因为sin^2a+cos^2a=1(sina+cosa)^2-2sina*cos=1x^2-2y
x-3=cosay+2=-sina(x-3)²+(y+2)²=(cosa)²+(-sina)²=cos²a+sin²a=1即:(x-3)
y=(1-x)*4/3
∵x=-3/5t+2∴3/5t=x-2∴4/5t=3/5t*4/3t=(x-2)*4/3∴y=(x-2)*4/3
(1)消去t得(x-2)/a=(y-1)/(a+1)整理得(y-1)=(a+1)/a(x-2)很明显方程为斜率为(a+1)/a并且过点(2,1)的直线(2)消去t得cosα=1/2;sinα=二分之根
x^2+y^2=1
(1)x=4cosφy=−5sinφ(φ为参数),利用平方关系,消去参数可得x216+y225=1; (2)x=1−4